
Visual Learning Beyond Direct Supervision

Tinghui Zhou

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2018-128
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2018/EECS-2018-128.html

August 22, 2018

Copyright © 2018, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Visual Learning Beyond Direct Supervision

by

Tinghui Zhou

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Computer Science

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Alexei A. Efros, Chair
Professor Jitendra Malik

Professor Bruno Olshausen

Summer 2018

Visual Learning Beyond Direct Supervision

Copyright 2018
by

Tinghui Zhou

1

Abstract

Visual Learning Beyond Direct Supervision

by

Tinghui Zhou

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Alexei A. Efros, Chair

Deep learning has made great progress in solving many computer vision tasks for which
labeled data is plentiful. But progress has been limited for tasks where labels are di�cult or
impossible to obtain. In this thesis, we propose alternative methods of supervised learning
that do not require direct labels. Intuitively, although we do not know what the labels are,
we might know various properties they should satisfy. The key idea is to formulate these
properties as objectives for supervising the target task. We show that this kind of “meta-
supervision” on how the output behaves, rather than what it is, turns out to be surprisingly
e↵ective in learning a variety of vision tasks.

The thesis is organized as follows. Part I proposes to use the concept of cycle-consistency
as supervision for learning dense semantic correspondence. Part II proposes to use the task
of view synthesis as supervision for learning di↵erent representations of scene geometry.
Part III proposes to use adversarial supervision for learning gradual image transformations.
Finally, we discuss the general concept of meta-supervision and how it can be applied to
tasks beyond those presented in this thesis.

i

To my parents for their love and support

ii

Contents

Contents ii

List of Figures vi

List of Tables viii

1 Introduction 1

I Learning dense semantic correspondence 3

2 Dense Semantic Correspondence Through Joint Alignment 4

2.1 Introduction . 4
2.2 Background . 6
2.3 Joint Image Alignment using FlowWeb . 8

2.3.1 Cycle consistency . 8
2.3.2 Objective . 10
2.3.3 Optimization . 10

2.4 Experiments . 13
2.4.1 Part segment matching . 13
2.4.2 Keypoint matching . 14
2.4.3 E↵ect of image collection size . 15
2.4.4 Comparison with Mobahi et al. [149] 16
2.4.5 Annotation-free Active Appearance Models 17
2.4.6 Runtime complexity . 17

2.5 Discussion . 18

3 Learning Dense Correspondence via 3D-guided Cycle Consistency 20

3.1 Motivation and background . 21
3.2 Approach . 23

3.2.1 Learning dense correspondence . 23
3.2.2 Learning dense matchability . 24
3.2.3 Continuous approximation of discrete maps 25

iii

3.2.4 Network architecture . 25
3.3 Experimental Evaluation . 25

3.3.1 Training set construction . 26
3.3.2 Network training . 26
3.3.3 Keypoint transfer . 28
3.3.4 Matchability prediction . 29
3.3.5 Shape-to-image segmentation transfer 30

3.4 Discussion . 30

II Learning scene geometry 32

4 View Synthesis by Appearance Flow 33

4.1 Introduction . 33
4.2 Background . 35
4.3 Approach . 36

4.3.1 Learning view synthesis via appearance flow 37
4.3.2 Learning to leverage multiple input views 38

4.4 Experiments . 40
4.4.1 Novel view synthesis for objects . 40

4.5 Discussion . 43

5 Learning Depth and Ego-Motion via View Synthesis 46

5.1 Introduction . 47
5.2 Background . 48
5.3 Approach . 50

5.3.1 View synthesis as supervision . 51
5.3.2 Di↵erentiable depth image-based rendering 52
5.3.3 Modeling the model limitation . 52
5.3.4 Overcoming the gradient locality . 53
5.3.5 Network architecture . 53

5.4 Experiments . 54
5.4.1 Single-view depth estimation . 55
5.4.2 Pose estimation . 59
5.4.3 Visualizing the explainability prediction 60

5.5 Discussion . 61

6 Learning Multiplane Images via View Synthesis 63

6.1 Introduction . 64
6.2 Background . 65
6.3 Approach . 67

6.3.1 Multiplane image representation . 68

iv

6.3.2 Learning from stereo pairs . 69
6.3.3 Di↵erentiable view synthesis using MPIs 70
6.3.4 Objective . 71
6.3.5 Implementation details . 71

6.4 Data . 72
6.4.1 Identifying videos . 73
6.4.2 Identifying and tracking clips with SLAM 73
6.4.3 Refining poses with bundle adjustment 74
6.4.4 Filtering and clipping . 74
6.4.5 Choosing training triplets . 75

6.5 Experiments and results . 76
6.5.1 Visualizing the multiplane images 76
6.5.2 Comparison with Kalantari et al. 76
6.5.3 Comparison with extrapolation methods 78
6.5.4 Ablation studies . 79
6.5.5 Applications . 80

6.6 Discussion . 84

III Learning gradual image transformation 86

7 Learning Gradual Image Transformation 87

7.1 Introduction . 87
7.2 Background . 88
7.3 Approach . 90

7.3.1 Adversarial loss . 90
7.3.2 Di↵erential loss . 91
7.3.3 Content loss and the full objective . 92
7.3.4 Implementation details . 92

7.4 Experiments . 92
7.4.1 Qualitative results . 93
7.4.2 Qualitative comparison with the baselines 93
7.4.3 Evaluation of transformation consistency 95
7.4.4 Evaluation of perceptual quality . 96
7.4.5 Ablation studies . 97
7.4.6 Failure modes . 98
7.4.7 Additional results . 98

7.4.7.1 Painting animation . 98
7.4.7.2 Multi-domain transformations 100

7.5 Discussion . 100

8 Conclusions 101

v

Bibliography 103

vi

List of Figures

2.1 Finding pixel-wise correspondences is di�culty with pairwise methods. 5
2.2 Illustration of the FlowWeb representation. 9
2.3 The flow update priority pattern over iterations. 11
2.4 Correspondence visualization for di↵erent methods with color-coded part segments. 14
2.5 Comparison of keypoint correspondence tracks along a cycle in the graph. 15
2.6 Alignment accuracy as a function of image set size using our method. 16
2.7 Comparison with the compositional model baseline. 17
2.8 Visualization of unsupervised keypoint selection. 18

3.1 Illustration of our setup for learning dense correspondence using cycle consistency. 21
3.2 Overview of our network architecture. 26
3.3 Visualizing the e↵ects of consistency training on the network output. 27
3.4 Comparison of keypoint transfer performance. 28
3.5 Sample visualization of our matchability prediction. 29
3.6 Visual comparison among di↵erent segmentation methods. 31

4.1 Overview of our single-view network architecture. 39
4.2 Overview of our multi-view network architecture. 40
4.3 Comparison of our single-view synthesis results with the baseline method. 41
4.4 Visualization of error statistics for generating novel views from a single input view. 42
4.5 Sample appearance flow vectors predicted by our method. 43
4.6 View synthesis examples using our multi-view network. 44
4.7 View synthesis results for segmented objects in the PASCAL VOC dataset. . . . 45

5.1 An example image from the KITTI dataset. 46
5.2 Illustration of our training setup. 48
5.3 Overview of the supervision pipeline based on view synthesis. 50
5.4 Illustration of the di↵erentiable image warping process. 51
5.5 Network architecture for our depth/pose/explainability prediction modules. . . . 54
5.6 Our sample predictions on the Cityscapes dataset. 55
5.7 Comparison of single-view depth estimation. 56

vii

5.8 Comparison of single-view depth predictions on the KITTI dataset by our initial
Cityscapes model and the final model. 57

5.9 Our sample predictions on the Make3D dataset. 59
5.10 Absolute Trajectory Error (ATE) at di↵erent left/right turning magnitude. . . . 60
5.11 Sample visualizations of the explainability masks. 61

6.1 Overview of our learning pipeline and its application. 63
6.2 An illustration of the MPI representation. 67
6.3 Overview of our end-to-end learning pipeline. 68
6.4 Dataset output and frame selection, showing estimated camera trajectory and

sparse point cloud. 75
6.5 Sample visualization of the predicted MPIs. 77
6.6 Sample view extrapolation results using MPIs. 78
6.7 Comparison with Zhang et al. on the HCI light field dataset. 79
6.8 Comparison between the models trained using pixel reconstruction loss and VGG

perceptual loss. 81
6.9 Comparison between di↵erent color prediction formats. 82
6.10 E↵ect of varying the number of depth planes at di↵erent view o↵sets. 83
6.11 Example stereo magnifications for dual-lens camera. 84
6.12 Example stereo magnifications for Fujifilm Real 3D stereo camera. 85
6.13 Challenging cases. 85

7.1 Visualization of the di↵erential loss. 91
7.2 Qualitative results of our method. 94
7.3 Qualitative comparison between the CycleGAN (iterative) baseline and our method. 95
7.4 Comparison of our method against FaderNetworks. 96
7.5 Failure cases. 98
7.6 Progressions from a single painting using models that were trained on natural

images. 99
7.7 Multi-domain season transformation. 99

viii

List of Tables

2.1 Weighted intersection over union (IOU) for part segment matching. 13
2.2 Keypoint matching accuracy (PCK) on 12 rigid PASCAL VOC categories. . . . 15

3.1 Keypoint transfer accuracy on the PASCAL3D+ categories. 27
3.2 Performance comparison of matchability prediction between SIFT flow and our

method. 30

4.1 Mean pixel error between the ground-truth and di↵erent predictions. 42

5.1 Single-view depth results on the KITTI dataset. 57
5.2 Results on the Make3D dataset. 58
5.3 Absolute Trajectory Error (ATE) on the KITTI odometry split. 60

6.1 Our network architecture. 72
6.2 Quantitative comparison between our model and the baselines 78
6.3 Quantitative evaluation of variants of network color output. 81
6.4 Evaluating the e↵ect of varying the number of depth planes. 82

7.1 Evaluating the transformation consistency for di↵erent methods with the PCP
metric (higher is better). 96

7.2 Perceptual studies on day to sunset progression images. 97

ix

Acknowledgments

PhD is a long journey, so long that one cannot endure it alone. Fortunately, I was accom-
panied by an incredible group of people who helped me get through the finish line.

I would like to thank my advisor, Alexei (Alyosha) Efros, for his invaluable guidance,
inspiration and support throughout the years. I first met him at CMU when I was a Masters
student looking for a research advisor. Back then I was most fascinated by the mathemati-
cal complexity of machine learning problems, while Alyosha strived for the exact opposite –
solving problems in the simplest possible way (with nearest neighbors being his favorite algo-
rithm). I was very skeptical at first, but soon became a believer in simplicity as well. From
him I not only received the best possible research guidance, but also learned to appreciate the
much larger life beyond research. I am also thankful for his unequivocal support during the
beginning of my PhD when my research was constantly hitting roadblocks. Despite mixed
feelings about every submission being a last-minute rush and my snack box being looted on
a daily basis, having Alyosha as my advisor was one of the best decisions of my life, and I
will always be grateful for his mentorship.

When asked what it was like to be advised by Alyosha, Derek Hoiem had a great answer:
“Alyosha is a poet. We [his students] must know how to translate his poetry into prose.”
However, this is not a trivial process. Fortunately, I had help from many of our talented
postdocs and senior collaborators, including Yong Jae Lee, Stella Yu, Qixing Huang, Math-
ieu Aubry, Philipp Krähenbühl, and Phillip Isola. I would like to thank Yong Jae and Stella
for guiding me through my first paper during PhD, and helping me transition from CMU to
Berkeley. Thanks to Qixing and Mathieu for their passion and insight during our collabo-
ration. I am thankful to Philipp Krähenbühl for all the insightful and candid conversations
about research, programming and life in general. I learned a great deal from his unique
perspectives. Thanks to Phillip Isola for showing me how to persist in pursuing grand re-
search goals. One piece of advice about going on trips with Phil: be physically and mentally
prepared for the unconventional level of roughness.

I am grateful to all my peers of the Efros group, including Jun-Yan Zhu, Shiry Ginosar,
Richard Zhang, Carl Doersch, Taesung Park, Deepak Pathak, Allan Jabri, and Kate Rakelly.
I don’t think one could find a more friendly and supportive group anywhere else. Thanks
to Jun-Yan (and his cat, Aquarius) for being my first and only roommate during my years
at Berkeley. Jun-Yan seems to possess some special aura that makes living with him always
eventful and full of surprises. I also learned a lot from witnessing his entire path of progression
into the top-notch researcher as he is today. Special thanks to Shiry Ginosar for being the
real “adult” in our group who never failed to provide the rational voice when group meetings
and other events started derailing. I also had the fortune to work with her on multiple
projects, and was constantly impressed by her unique insights and the ability to tease out
the nonsense in seemingly complex research ideas. I thank Richard Zhang for all the fun
discussion on sports, video games, American and Chinese culture, muscle gaining strategies
and many others, which served a helpful reminder of life beyond the seemingly endless coding.

x

It persistently amazed me how much talent was packed into the small o�ce space of
the 7th floor of Sutardja Dai Hall (and later Cory 307 as well). I am thankful for being
able to share the journey with the amazing peers and colleagues in BAIR, including Shub-
ham Tulsiani, Pulkit Agrawal, Saurabh Gupta, Abhishek Kar, Bharath Hariharan, Georgia
Gkioxari, Katerina Fragkiadaki, Andrew Owens, David Fouhey, Angjoo Kanazawa, Joao
Carreira, Panna Felsen, Eric Kuo, Ke Li, Christian Häne, Amir Zamir, Ashish Kumar, Zhe
Cao, Zhuang Liu, Shizhan Zhu, Yangqing Jia, Ross Girshick, Je↵ Donahue, Evan Shelhamer,
Jonathan Long, Eric Tzeng, Lisa Anne Hendricks, Judy Ho↵man, Dinesh Jayaraman, Yang
Gao, Samaneh Azadi, Ronghang Hu, Huazhe Xu, Dequan Wang, Fisher Yu, Yi Wu, Hyun Oh
Song, Jacob Huh, Caroline Chan, Andrew Liu, Hemang Jangle, Angela Lin, Rocky Duan,
and Peter Chen. I had the fortune to publish two papers with Shubham. It was such a
pleasure to collaborate with him, and I would nominate him for the best co-author award
if there was one. We spent a wonderful summer internship in New York, and discovered
the joy of Broadway musicals together1. Thanks to Pulkit Agrawal for being a great friend
with whom I can bounce all the crazy ideas. I wish him success in preaching Pulkitology
as a professor, and hopefully some day as an entrepreneur too. Special thanks to David
Fouhey and Angjoo Kanazawa for making our bay full of joy, energy and arguably the most
interesting bay in Cory 307. I have also had the privilege of interacting with many faculty
members at Berkeley, including my thesis committee members Jitendra Malik and Bruno
Olshausen, as well as Ren Ng, Trevor Darrell, Sergey Levine, and Pieter Abbeel.

Thanks to many other Berkeley friends for sharing the journey with me, including Weilun
Sun, Xuaner Zhang, Chang Lan, Biye Jiang, Ling-Qi Yan, Hezheng Yin, Chi Jin, Qifan
Pu, Xiang Gao, Xin Wang, Yang You, Yuansi Chen, Yubei Chen and Xi Zhang. Special
thanks to Angie Abbatecola for numerous career-saving tips on treading through Berkeley
bureaucracies.

I also enjoyed my two-time internships at Google. Thanks to David Lowe and Matthew
Brown for hosting me in the Seattle o�ce, and giving me all the help with the internship
project, especially during the tumultuous period when I was stuck in China due to visa issues.
I spent an amazing summer at New York hosted by Noah Snavely. Noah’s vast knowledge on
both computer vision and graphics coupled with the nicest personality makes working with
him both enlightening and fun. I am fortunate to have worked with him on several projects,
and truly grateful for all the help and advice I received. Thanks to Richard Tucker for the
life tips in New York and the tremendous help with the internship project. I would also
like to thank all the Googlers and fellow interns for making both internships an incredible
experience, including John Flynn, Graham Fy↵e, Aseem Agarwala, Yiming Liu, Li Zhang,
Eric Penner, Ziwei Liu, Raymond Yeh, Yipu Zhao, Yongbin Sun, Michael Figurnov, Jingbo
Shang, Shanshan Wu, Shihui Li and many others.

Last but not least, this thesis would not have been possible without the love and support
from my parents who have given me all the freedom to pursue my dream. I dedicate this
thesis to them.

1Ok ok, it was mostly me nudging him for company...

1

Chapter 1

Introduction

Computer vision has made great progress in a variety of domains, including image clas-
sification [116, 180, 73], object detection [58, 164, 74], semantic segmentation [136, 20],
human pose estimation [15, 65] and many others. Such progress is largely driven by the
rapid development of supervised learning using deep neural networks. The number of train-
able parameters in these networks could range from millions to billions, which require large
amount of labeled examples for training. Datasets like ImageNet [171] and COCO [128] have
been excellent data source so far for many recognition tasks. However, we should also notice
that there exists a long list of vision tasks for which it is very di�cult or even fundamentally
infeasible to obtain labeled data in large scale – amodal scene completion, scene flow estima-
tion, dense correspondence, intrinsic image decomposition, just to name a few. Therefore,
a natural question arises: is it possible to overcome label scarcity while still leveraging the
computational power of deep learning?

One plausible solution is computer simulation, where we use computer graphics to render
a synthetic environment to have full control of the data generation process [14, 18, 37, 167].
While the quality and usability of these environments have been improving over the years,
models trained on such data are still not directly applicable to the real world due to the
significant domain gap between the rendered and the real world visual data. The other
potential solution is transfer learning, where the network weights are initialized by training
on some pretext task like ImageNet classification, and then later fine-tuned on the target
task. This strategy is e↵ective in reducing the number of training labels for the target task,
but currently still requires a nontrivial amount of labeled data.

In this thesis, we investigate how to use alternative supervisory signals for learning visual
tasks without requiring any direct labels. Intuitively, although we do not know what the
ground-truth is, we might know how the various properties it should satisfy. The key idea
is to formulate these properties as objectives for learning the target task. As demonstrated
in this thesis, this kind of “meta-supervision” on how the output behaves, rather than what
it is, turns out to be surprisingly e↵ective in learning a variety of visual tasks.

Part I: Learning dense semantic correspondence We first study the concept of cycle-

CHAPTER 1. INTRODUCTION 2

consistency and how it could be utilized to obtain globally-consistent semantic correspon-
dence within image collections. Then we show how to use cycle-consistency as supervisory
signal for learning pairwise dense correspondence. For this task, although it is infeasible
to collect large-scale ground-truth in the real image domain, we know the ground-truth
should be consistent across instances of the same category even for synthetic ones. We use
consistency as supervision for training the deep network without access to ground-truth cor-
respondences in the real domain.

Part II: Learning scene geometry Then we present a framework for learning scene
geometry with view synthesis as supervision without ground-truth geometric labels. We for-
mulate the learning objective around the observation that if the scene geometry is predicted
correctly from the input image(s), it should consistently explain the nearby frames through
the task of novel view synthesis. In particular, we show that one could learn monocular
depth and camera motion estimation from unstructured video sequences, and layered scene
representation from posed images.

Part III: Learning gradual image transformation Finally, we propose to use adver-
sarial networks to provide supervisory signals for learning gradual image transformations.
By utilizing adversarial training coupled with a di↵erential loss (that provides the direction
of transformation) and a content loss (that preserves desired input semantics), we are able
to train the network to predict gradual transformations without directly labeled data.

Finally, we discuss the general concept of “meta-supervision”: supervision on not what
the data is but how it should behave, and how it could be applied to a variety of domains
beyond what is presented in this thesis.

3

Part I

Learning dense semantic

correspondence

4

Chapter 2

Dense Semantic Correspondence

Through Joint Alignment

Correspondence (also known as alignment or registration) is the task of establishing
connections between similar points/regions across di↵erent images, either sparsely (e.g.
SIFT [139] keypoint matching), or densely at every pixel (e.g. optical flow). Correspon-
dence can be defined either locally, as a pairwise connection between two images, or glob-
ally, as a joint label assignment across an image collection. In this chapter, we introduce
FlowWeb, a correspondence-centric representation of image sets, and an algorithm for joint
image alignment by maximizing the cycle consistency of the FlowWeb representation.

FlowWeb is a fully-connected correspondence flow graph with each node representing an
image, and each edge representing the correspondence flow field between a pair of images,
i.e. a vector field indicating how each pixel in one image can find a corresponding pixel in the
other image. Correspondence flow is related to optical flow but allows for correspondences
between visually dissimilar regions if there is evidence they correspond transitively on the
graph. Our algorithm starts by initializing all edges of this complete graph with an o↵-the-
shelf, pairwise flow method. We then iteratively update the graph to force it to be more
self- consistent. Once the algorithm converges, dense, globally-consistent correspondences
can be read o↵ the graph. Our results suggest that FlowWeb improves alignment accuracy
over previous pairwise as well as joint alignment methods 1. The concept and e↵ectiveness
of cycle-consistency further inspired the work in the next chapter.

2.1 Introduction

Consider a pair of chairs depicted on Fig. 2.1(a). While the chairs might looks similar,
locally their features (like the seat corner above) are very di↵erent in appearance, so classic
image alignment approaches like SIFT Flow [129] have trouble finding correct correspon-

1This work was originally published as FlowWeb: Joint Image Set Alignment by Weaving Consistent,
Pixel-wise Correspondences. In CVPR, 2015 [231].

CHAPTER 2. DENSE SEMANTIC CORRESPONDENCE THROUGH JOINT
ALIGNMENT 5

Figure 2.1: Finding pixel-wise correspondences between images is di�cult even if they depict
similar objects: (a) a typical correspondence error using a state-of-the-art pairwise flow
estimation algorithm. (b) We propose computing correspondences jointly across an image
collection in a globally-consistent way.

dences. The reason we, human observers, have little trouble spotting visual correspondences
between the features of these two chairs is likely because we have been exposed to many hun-
dreds of chairs already, and are able to draw upon this knowledge to bridge the appearance
gap. In light of this observation, we propose to “level the playing field” by starting with a
set of images and computing correspondences jointly over this set in a globally-consistent
way, as shown in Fig. 2.1(b).

One can appreciate the power of joint correspondence by considering faces, a domain
where correspondences are readily available, either via human annotation, or via domain-
specific detectors. Large-scale face datasets, meticulously annotated with globally-consistent
keypoint labels (“right mouth corner”, “left ear lower tip”, etc) were the catalyst for a
plethora of methods in vision and graphics for the representation, analysis, 3D modeling,
synthesis, morphing, browsing, etc. of human faces [28, 145, 105, 12, 106]. Of course,
faces are a special object class in many ways: they can generally be represented by a linear
subspace, are relatively easy to detect in the wild and relatively easy to annotate (i.e. have
well-defined keypoints). Nonetheless, we believe that some of the same benefits of having
large, jointly registered image collections should generalize beyond faces and apply more
broadly to a range of visual entities, provided we have access to reliable correspondences.
Indeed, the recent work of Vicente et al. [196] on reconstructing PASCAL VOC classes using
hand-annotated key-points is an exciting step in this direction. But what about cases when
manual keypoint annotation is di�cult or infeasible?

Our goal is to establish globally-consistent pixel-wise correspondences between all images
within a given image collection, without any supervision. Just as the face modeling ap-

CHAPTER 2. DENSE SEMANTIC CORRESPONDENCE THROUGH JOINT
ALIGNMENT 6

proaches start with a collection of detected faces in very coarse correspondence (on the level
of a bounding box), we propose to start with a collection of coarsely similar images, which
could be obtained as a result of an object detector [58], a mid-level discriminative visual
element detector [35], or directly from a dataset with labeled bounding boxes.

The key insight is to focus on the correspondence flow fields between the images instead of
working with image pixels directly. We achieve this by representing the image collection as a
FlowWeb – a fully-connected graph with images as nodes and pixel flow fields between pairs
of images as edges. We show that, starting with a simple initialization, we are able to force
the FlowWeb to become consistent by iteratively updating the flow fields until convergence.

2.2 Background

Pairwise Image Flow The idea of generalizing optical flow to pairs of images that are only
semantically related was first proposed in SIFT Flow [129], which adopted the computational
framework of optical flow, but with local appearance matching being done on SIFT descrip-
tors instead of raw pixels to add local appearance invariance. Deformable Spatial Pyramid
(DSP) Matching [110], a recent follow-up to SIFT Flow, greatly improves the speed of the
algorithm, also modestly improving the accuracy. Other works in this space include [10],
which generalizes PatchMatch [8] to use feature descriptors instead of pixel patches, and
more recently, finding pairwise correspondences using convolutional features [135].

Image graphs for pattern discovery The vast literature on object discovery and co-
segmentation treats the image set as an unordered bag. Recent work exploits the connectivity
within an image collection by defining a graph over images (e.g. [76, 138, 223, 68]) or objects
(e.g. [142, 106, 25]). More relevant to us, [124, 43, 170] perform joint object discovery and
segmentation on a noisy image set, resulting in often excellent region-wise correspondences.
However, their main aim is to find and segment a consistent object, whereas we aim to find
dense pixel-wise correspondences in an image set.

Graph consistency The idea of utilizing consistency constraints within a global graph
structure has been applied to a variety of vision and graphics problems, including co-
segmentation [199, 200], structure from motion [223, 208], and shape matching [85]. Most
related to ours is [85], which formulates the constraint of cycle consistency as positive semi-
definiteness of a matrix encoding a collection of pairwise correspondence maps on shapes,
and solves for consistent maps via low-rank matrix recovery with convex relaxation. We also
employ a cycle consistency constraint, but optimize it completely di↵erently. Our problem
complexity is also considerably larger: the number of pixels per image is typically two orders
of magnitude greater than the number of sample points per shape.

Joint pixel-wise alignment of image sets Average images have long been used infor-
mally to visualize joint (mis)alignment of image sets (e.g. [190]). However, it was the seminal

CHAPTER 2. DENSE SEMANTIC CORRESPONDENCE THROUGH JOINT
ALIGNMENT 7

work of Congealing [122, 84] that established unsupervised joint alignment as a serious re-
search problem. Congealing uses sequential optimization to gradually lower the entropy of
the intensity distribution of the entire image set by continuously warping each image via a
parametric transformation (e.g. a�ne). Congealing demonstrates impressive results on the
digit dataset and some others, but does not perform as well on more di�cult data.

RASL [157] also focuses on modeling a common image intensity structure of the image
set; in their case, as a low-rank linear subspace plus sparse distractors specific to each image.
Again, parametric transformations are used to align the images to the common subspace.
The main di�culty with subspace methods is that they assume that the majority of images
are already in good correspondence, else the subspace would end up encoding multiple shifted
copies of the data. Collection Flow [104] also uses a low-rank subspace to model the common
appearance of the collection, but with a clever twist by using non-parametric transformations
(i.e. optical flow) that align between each image and its low-rank projection at each iteration
(their application domain is faces, where the coarse alignment is good enough for subspace
projections to work well). Mobahi et al. [149] propose a generative image representation
that models each image as the composition of three functions: color, appearance, and shape.
The appearance and shape functions are assumed to be constructed from a small set of basis
functions (i.e., restricted to low-dimensional subspaces) in order to control the composition
capacity. The model is used to establish dense correspondences between instances of the
same object category.

All the subspace-based methods above share the same basic idea – compute some global
representation of the image data, and then try to warp every image to make it more consis-
tent with that representation (one can think of this as a star graph centered at the global
representation connecting each image in the set). This works well if the distances between
the images and the global representation can be trusted. But what if the image data lives
on an articulation manifold [147], where only local distances are reliable? [172] takes this
view, modeling the image collection not by some global representation, but using a locally-
connected graph. This method shows very good results for aligning images of the same physi-
cal scene under low-dimensional transformations (global rotation, stretching, etc). However,
it is not directly applicable for collections of multiple instances of the same object cate-
gory. Concurrently with our work, Carreira et al. [16] models the image collection with a
‘virtual view network’, and resolves the di�culty of cross-view image alignment by finding
the shortest geodesic path along the network. However, constructing the network requires
either human annotations (e.g. keypoints) or pre-trained, category-specific pose predictors,
whereas our method is fully unsupervised and does not require any training.

Like Collection Flow [104], our method uses compositions of flow fields to model con-
nections between images. But instead of using a global, centered representation of the data
like [209, 104, 149], our representation is defined on pairwise connections in the graph,
like [172]. However, we di↵er from [172] in a number of important ways: 1) [172] represents
the image set by a nearest neighbor graph, trusting the optical flow algorithm to be reliable
when the flow field magnitude is small. We take a di↵erent perspective, and rely instead
on the “wisdom of crowd”, trusting the flow consistency among triplets of images in a fully

CHAPTER 2. DENSE SEMANTIC CORRESPONDENCE THROUGH JOINT
ALIGNMENT 8

connected image network. With the complementary information among images, not only
can we ”fill in the blanks” arising from occlusion and outliers, but also find reliable corre-
spondences between images that do not look alike; 2) [172] explicitly projects the manifold
into a lower-dimensional space (3-4D), whereas we keep our correspondence flow graph in
high dimension and let it become more self-consistent on its own, controlling its own intrinsic
dimensionality.

2.3 Joint Image Alignment using FlowWeb

Given a collection of images {I1, . . . , IN} of the same visual concept, we would like to find
dense pixel-wise correspondences that are consistent throughout the entire image collection.
Our basic idea is that global correspondences emerge from consistent local correspondences
in a bootstrap fashion. The quality of pixel-wise matching between two images Ii, Ij can be
validated with multiple additional images. For each third image Ik, pixels p 2 Ii and q 2

image Ij are matched transitively if there is r 2 Ik, where (p, Ii) matches (r, Ik), and (r, Ik)
matches (q, Ij). That is, even when p, q do not have su�cient feature similarity directly,
there may be su�cient indirect evidence from their similarity to other images supporting
their match.
FlowWeb Representation Given a collection of N images, we build a complete graph of
N nodes, where a node denotes an image, and the edge between two nodes (i, j) is associated
with flow field Tij between images (Ii, Ij) (see Fig. 2.2). For M pixels per image, Tij is an
M ⇥ 2 matrix, each row containing the displacement vector between two matching pixels p
and q in images Ii and Ij respectively:

T
pq
ij = xq � xp, (p, Ii) matches (q, Ij) , (2.1)

where xp denotes the spatial coordinates of pixel p.

2.3.1 Cycle consistency

Global correspondences in the image collection require the pairwise flow fields to be
consistent among di↵erent paths connecting two nodes in the graph. Cycle consistency
criterion can be expressed as the net displacement along a cycle in the FlowWeb being zero,
e.g. for two-image cycle,

T
pq
ij + T

qr
ji = (xq � xp) + (xr � xq)

= xr � xp = 0, i↵ r = p.

Let Tik � Tkj denote such flow composition from Ii through Ik to Ij. We define:

2-cycle consistency: Tij � Tji = 0

3-cycle consistency: Tik � Tkj � Tji = 0.

CHAPTER 2. DENSE SEMANTIC CORRESPONDENCE THROUGH JOINT
ALIGNMENT 9

Figure 2.2: An example of our FlowWeb representation, where a node denotes an image,
and each edge represents the flow field between two images.

While the number of cycles with arbitrary length is exponential in the number of nodes in
the graph, [153] shows that considering only 2-cycles and 3-cycles are often su�cient for
complete graphs. The concept of cycle consistency has also been explored in joint shape
matching [85, 153], co-segmentation [199, 200] as well as SfM [223, 208].

We measure the quality of a matching flow by counting how many consistent 3-cycles go
through it in the FlowWeb. If three images form a consistent cycle at a flow T

pq
ij , it means

this flow is validated by a third image Ik, such that

T
pq
ij = T

pr
ik + T

rq
kj . (2.2)

Let 4pq
ij denote the set of image nodes that complete a consistent cycle with flow T

pq
ij . We

define the single flow cycle consistency (SFCC) score as the cardinality of 4:

C(T pq
ij) = |4

pq
ij |card =

NX

k=1,k /2{i,j}

[T pq
ij = T

pr
ik + T

rq
kj], (2.3)

where [·] is the binary indicator function.
We generalize the SFCC concept to the whole flow set T = {Tij}, and define all flow

cycle consistency (AFCC) that counts the number of consistent 3-cycles in T:

C(T) =
1

3

NX

i,j=1,i 6=j

X

p2Ii

C(T pq
ij) . (2.4)

The factor of 1/3 corrects for the over-counting when summing over SFCC’s for the three
edges of the same cycle.

CHAPTER 2. DENSE SEMANTIC CORRESPONDENCE THROUGH JOINT
ALIGNMENT 10

2.3.2 Objective

Our objective has two terms: FlowWeb cycle consistency C(·), and regularization R(·)
that measures the di↵erence between the currentT = {Tij} and the initial flow setT0 = {Sij}

provided by a pairwise flow method (e.g. [110, 129]):

max
T

C(T)� �R(T,T0) , (2.5)

R(T,T0) =
NX

i,j=1,i 6=j

X

p2Ii

kT
pq
ij � S

ps
ij k , (2.6)

where � > 0 can be chosen based on the initialization quality, s denotes p’s initial correspon-
dence in image j, and k · k is the Euclidean norm.

2.3.3 Optimization

For clarity of exposition, we ignore the regularization term R(·) for now and focus on
optimizing the cycle consistency term alone. Our iterative optimization procedure builds on
the following intuition: even when pixels p and q do not have su�cient feature similarity to
be matched directly, they should still be matched if there is su�cient indirect evidence from
1) their similarity to other images supporting the match (inter-image) and/or 2) proximity
to neighboring pixels that have a good match (intra-image). Both are provided by the cycle
consistency measure, and exploited alternately at each iteration.
Inter-image phase The first phase of our iterative optimization involves the computation
of a priority score for each flow in the current flow set. The update priority is high for
flows that satisfy two criteria: 1) have low cycle consistency and 2) the consistency of
an alternative solution is high. In our case, the alternative solutions to T

pq
ij are provided

by one-hop transitive flows, i.e. {T pr
ik + T

rt
kj , 8k}

2. Essentially, we would like the priority
to measure the overall consistency gap between the current solution and some transitive
solution. However, exact evaluation of the consistency gap is too expensive, as the change
of one flow could potentially a↵ect the consistency of all other flows that involve it in the
SFCC computation.

Instead, we compute a lower bound based on the following observation: if pixels < p, r, t >

are cycle-consistent, and there exists another pixel u such that both < p, u, r > and < r, u, t >

are cycle-consistent, then < p, u, t > are also cycle-consistent. In other words, if we consider
the two flows T pr and T

rt that comprise a transitive flow between p and t, and denote the
set of nodes each is consistent with by 4

pr and 4
rt respectively, then the transitive flow

T
pt = T

pr + T
rt is guaranteed to be consistent with 4

pr
\ 4

rt, and |4
pr

\ 4
rt
|card is the

SFCC lower bound for T pt, while holding all other flows fixed. In light of this observation,

2Note that we use q to denote p’s direct correspondence in image j, and t to denote the transitive
correspondence.

CHAPTER 2. DENSE SEMANTIC CORRESPONDENCE THROUGH JOINT
ALIGNMENT 11

1

2

3

4

5

6

7

8

9

10

11

12

13

Iteration 3

1

2

3

4

5

6

7

8

9

10

11

12

13

Iteration 5

1

2

3

4

5

6

7

8

9

10

11

12

13

Iteration 1

Figure 2.3: The flow update priority pattern over iterations. Shown here is an image ensemble
made of 13 wheel images related by in-plane rotation, i.e. they lie on a 1D manifold (light
gray curve) with increasing di↵erences from left to right. The priority score is defined for
each flow and it is large if there exists a transitive alternative that achieves better cycle
consistency. Each image is shown with a red mask, indicating the sum of priority for all
the flows associated with each pixel. The connections between each pair of images show
the overall priority summed over all flows between them (thicker means higher). As shown,
there are more mid-range connections (high update priority between not so similar images)
initially, more long-range connections (high update priority between more distinct images)
subsequently, and more even connections throughout the ensemble finally. There are far
fewer short-range connections throughout iterations, since nearby images tend to have good
correspondences and are cycle-consistent already. These flows thus have low priority.

for each pair of images i and j, we compute the update priority of a flow T
pq
ij by

P(i, j, p) = max
k

|4
pr
ik \4

rt
kj|card � |4

pq
ij |card , (2.7)

where the first term of the RHS computes the consistency lower bound for each transi-
tive flow and takes the maximum. Intuitively, P(i, j, p) is the lower bound of cycle con-
sistency improvement if T

pq
ij is replaced by the transitive flow through image k̂, where

k̂ = argmaxk |4
pr
ik \4

rt
kj|card. See Figure 2.3 for an illustration of the update priority pattern

on a set of synthetic examples.
Intra-image phase While the previous phase essentially identifies and updates inconsistent
flows to consistent ones through propagation, it is nonetheless unable to deal with cases in
which the correct correspondence does not exist in the initial flow set, or simply has low
cycle consistency because most of its transitive counterparts are noisy. Consider a set of
front-view car images. The hood is typically texture-less while occupying a large image area,
and pairwise matching based on low-level features such as SIFT would be highly noisy. As a
result, it is likely that all flows emanating from such regions are incorrect and not consistent
for propagation with the priority-based update.

The second phase of our optimization addresses this issue by exploiting consistency-
weighted spatial smoothing, which identifies highly-consistent flows within a pairwise flow

CHAPTER 2. DENSE SEMANTIC CORRESPONDENCE THROUGH JOINT
ALIGNMENT 12

field, and utilizes them as soft anchor points to guide inconsistent flows to likely better
solutions. For the example of front-view cars, one could potentially use flows from headlights
or window corners that tend to be more cycle-consistent to guide flows from the hood.
Specifically, for each flow field corresponding to a pair of images, we first identify flows that
are of relatively low cycle consistency, and then apply a consistency-weighted Gaussian filter
to each of them by

T
pq
ij =

1

Z

X

p02Ii

T
p0q0

ij g�s(kxp0 � xpk)h�c(C(T
p0q0

ij)� C(T pq
ij)) (2.8)

where
Z =

X

p02Ii

g�s(kxp0 � xpk)h�c(C(T
p0q0

ij)� C(T pq
ij)) . (2.9)

g�s(·) is a zero-mean Gaussian with �s controlling the spatial extent of the filter, and

h�c(x) =

(
exp(x/�c) if x � 0

0 Otherwise
(2.10)

determines how much an adjacent flow is weighted according to the gap in cycle consistency.
Having g(·) and h(·) together ensures that each filtered flow is only influenced by flows that
are both spatially near and more cycle-consistent.

Our iterative update pipeline is summarized below:

1. Compute the SFCC score for each T
pq
ij using Eq. 2.3.

2. For each T
pq
ij , compute its update priority by Eq. 2.7, and record the node k̂ that

achieves the maximum.

3. Sort flows according to P(i, j, p), and update top �% flows by their transitive alterna-
tives through image k̂.

4. For each image pair i and j, apply Eq. 2.8 for consistency-weighted filtering.

5. Iterate 1–4 until the improvement of C(T) is below some threshold.

Regularization Optimizing the regularization term R(·) can be easily incorporated into
both update phases above. For the inter-image phase, the update priority becomes

P(i, j, p) = max
k

|4
pr
ik \4

rt
kj|card � |4

pq
ij |card�

�(kT pr
ik + T

rt
kj � S

ps
ij k � kT

pq
ij � S

ps
ij k). (2.11)

Similarly for the intra-image phase, we replace h�c(C(T
p0q0

ij) � C(T pq
ij)) with h�c(C(T

p0q0

ij) �

C(T pq
ij)� �(kT p0q0

ij � S
ps
ij k � kT

pq
ij � S

ps
ij k)).

Implementation details: For better robustness to noisy initial pairwise matching, we use
a relaxed threshold for determining cycle completeness in Eq. 2.3. In particular, we replace

CHAPTER 2. DENSE SEMANTIC CORRESPONDENCE THROUGH JOINT
ALIGNMENT 13

[T pr
ik + T

rq
kj = T

pq
ij] with [kT pr

ik + T
rq
kj � T

pq
ij k  ✏], where ✏ = 0.05 · max(h, w) (h and w are

image height and width). � = 20, �c = 0.05, �s = ✏, and � = 0.01 for all our experiments.
The code will be available on our website.

2.4 Experiments

We compare our alignment performance with Congealing [122] (using SIFT), Collection
Flow [104], DSP [110], and RASL [157]. All the baseline algorithms perform joint alignment
across the whole image collection, except DSP, which is the state-of-the-art pairwise image
matching algorithm and also used by us to initialize T0. We use publicly available code for
all baselines except Collection Flow, for which we implement our own version in Matlab. All
baselines are run with default parameters.

The image sets we use are sampled from the PASCAL-Part dataset [24]. To parse the
images of each category into sets that are meaningful to align (a counter example would
be aligning front-view cars to side-view cars), we run K-means clustering (K = 10) on
the provided part visibility labels and coarse viewpoint annotations from the original VOC
2010 dataset, and select three representative clusters with largest sizes to evaluate for each
category. A cluster is pruned if it has less than 10 images since joint alignment has little
e↵ect with few samples. The total number of image sets remaining is 47. In the interest of
time, we limit the largest size of each set to 100. Images within each set are further resized
to the average aspect ratio and maximum dimension of 150.

2.4.1 Part segment matching

We first evaluate alignment quality using human-annotated part segments. For quanti-
tative evaluation, we use weighted intersection over union (IOU) with weights determined
by the pixel area of each part, and report the mean performance over all sets for each cate-
gory in Table 2.1. For categories without part annotations (boat, chair, table, and sofa) we
simply use silhouette annotations for evaluation. We outperform all baselines on almost all
categories.

We also visualize the part matching results in Fig. 2.4. Overall, our method is able to
produce substantially more accurate correspondences than the baselines. The fact that many
of the mistakes made by the initial DSP matching are corrected in our final output highlights
the e↵ectiveness of our joint alignment procedure.

aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mean

Congealing 0.26 0.40 0.24 0.48 0.68 0.46 0.39 0.19 0.49 0.30 0.42 0.15 0.26 0.32 0.18 0.38 0.35 0.71 0.45 0.58 0.38
RASL 0.26 0.40 0.22 0.49 0.70 0.46 0.42 0.19 0.51 0.30 0.43 0.15 0.25 0.33 0.18 0.38 0.34 0.72 0.47 0.64 0.39

CollectionFlow 0.29 0.40 0.22 0.49 0.69 0.46 0.41 0.20 0.51 0.28 0.35 0.15 0.25 0.28 0.18 0.36 0.34 0.66 0.44 0.59 0.38
DSP 0.25 0.46 0.21 0.48 0.63 0.50 0.45 0.19 0.48 0.30 0.37 0.14 0.26 0.35 0.13 0.40 0.37 0.66 0.48 0.62 0.39
Ours 0.33 0.53 0.24 0.51 0.72 0.54 0.51 0.20 0.52 0.32 0.41 0.15 0.29 0.45 0.19 0.41 0.39 0.73 0.51 0.68 0.43

Table 2.1: Weighted intersection over union (IOU) for part segment matching on 20 PASCAL
VOC categories. Higher is better.

CHAPTER 2. DENSE SEMANTIC CORRESPONDENCE THROUGH JOINT
ALIGNMENT 14

Source Target Source Mask Congealing CollectionFlow DSP Ours Target MaskRASL

Figure 2.4: Correspondence visualization for di↵erent methods with color-coded part seg-
ments. Columns 1–2: source and target images. Column 3: annotated part segments for the
source image. Column 4–8: predicted part correspondences on the target image using di↵er-
ent methods. Column 9: annotated part segments for the target image (i.e. ground-truth).
Overall, our correspondence output improves significantly over the initial DSP matching,
and align part segments in greater precision than all baselines. (Best viewed in pdf.)

2.4.2 Keypoint matching

We next compare alignment accuracy using keypoint annotations for the 12 rigid PAS-
CAL categories provided by [212]. We use the same set of images sampled in the previous
experiment. The matching accuracy is assessed by the standard PCK measure [217], which
defines a keypoint matching to be correct if the prediction falls within ↵ ·max(h, w) pixels
of the ground-truth (h and w are image height and width respectively). For each category,
we report the mean PCK over all sampled sets with di↵erent methods in Table 2.2. Again,

CHAPTER 2. DENSE SEMANTIC CORRESPONDENCE THROUGH JOINT
ALIGNMENT 15

D
SP

D
SP

D
SP

O
ur

s
O

ur
s

O
ur

s

Figure 2.5: Comparison of keypoint correspondence tracks along a cycle in the graph (the
first and the last image is the same for all examples) between DSP (initialization to our
method) and ours. The keypoint correspondences become much more accurate and cycle-
consistent after our joint alignment procedure.

our method substantially outperforms all baselines.
Fig. 2.5 compares the keypoint correspondence tracks between DSP (pairwise matching

used for our initialization) and ours. DSP tracks tend to drift more as the path becomes
longer, while our tracks are relatively stable and cycle-consistent along the graph (note that
the first and the last image is the same for all examples).

aero bike boat bottle bus car chair table mbike sofa train tv mean

Congealing 0.12 0.23 0.03 0.22 0.19 0.14 0.06 0.04 0.12 0.07 0.08 0.06 0.11
RASL 0.18 0.17 0.04 0.33 0.31 0.17 0.09 0.04 0.12 0.10 0.11 0.23 0.16

CollectionFlow 0.16 0.17 0.04 0.31 0.25 0.16 0.09 0.02 0.08 0.07 0.06 0.09 0.12
DSP 0.17 0.30 0.05 0.19 0.33 0.34 0.09 0.03 0.17 0.12 0.12 0.18 0.17
Ours 0.29 0.41 0.05 0.34 0.54 0.50 0.14 0.04 0.21 0.16 0.15 0.33 0.26

Table 2.2: Keypoint matching accuracy (PCK) on 12 rigid PASCAL VOC categories (↵ =
0.05). Higher is better.

2.4.3 E↵ect of image collection size

We hypothesize that the more images in the set, the better correspondences our method
would produce as the cycle consistency measure becomes more robust. To verify this, we

CHAPTER 2. DENSE SEMANTIC CORRESPONDENCE THROUGH JOINT
ALIGNMENT 16

Image set size Image set size

0.25

0.3

0.35

0.4

0.45

23 24 25 26 27

aeroplane

car

bicycleP
C

K

0.35

0.4

0.45

0.5

0.55

23 24 25 26 27

P
ar

t I
O

U

Figure 2.6: Alignment accuracy as a function of image set size using our method. The test
set remains fixed as more images are included for joint alignment. Left: PCK. Right: Part
segment IOU. Overall, more images leads to more accurate correspondences.

plot alignment accuracy as a function of image set size. Specifically, for car, aeroplane,
and bicycle categories, we randomly sample 10 images as the test set for evaluation, and
progressively add more images to construct the alignment set together with the 10 test
images. As shown in Fig. 2.6, both keypoint and part-based matching accuracies indeed
improve as more images become available.

2.4.4 Comparison with Mobahi et al. [149]

To compare with Mobahi et al. [149], we use their Mushroom dataset [149], comprised
of 120 mushroom images and ground-truth foreground region and boundary masks for eval-
uation. After joint alignment, for each image pair, we compute both region and boundary
matching scores as defined in [149]. The region score measures the fraction of foreground
pixels in the warped source image that coincide with the foreground pixels in the target im-
age (perfect alignment would result in a region score of 1; so higher is better). The boundary
matching score measures the boundary displacement error (in pixels) between the warped
source image and the target image (perfect alignment would result in a boundary score of
0; so lower is better). We average these scores computed for every pair of images in the
dataset.

We obtain 0.84 and 6.44 for region and boundary alignment, respectively, compared to
Mobahi et al.’s 0.73 and 5.69. Upon closer examination of why we perform worse in the
boundary measure, we find our alignment to be more deformable than [149]. This can lead
to highly accurate results (top four rows in Fig. 2.7) but also to very poor results if the
deformation of the object is completely wrong (bottom row in Fig. 2.7). Such behavior
could greatly a↵ect boundary matching score as it is very sensitive to outliers.

CHAPTER 2. DENSE SEMANTIC CORRESPONDENCE THROUGH JOINT
ALIGNMENT 17

Source Target DSP Mobahi et al. Ours

Figure 2.7: Comparison with the compositional model of [149]. Rows 1–4/5 are suc-
cess/failure examples of our method.

2.4.5 Annotation-free Active Appearance Models

Training Active Appearance Models (AAM) [28] typically requires extensive human la-
beling of landmark keypoints. We show that it is possible to bypass the keypoint annotation
step by using the cycle-consistency measure to identify keypoint surrogates. In particular,
we can sum over the SFCC score for all the flows coming out of a pixel p in image i byPN

j=1

PN
k=1,k /2{i,j}[T

pq
ij = T

pr
ik + T

rq
kj], and use it to guide keypoint selection. Here is a simple

pipeline: 1) Compute per-pixel consistency score using the above equation; 2) Pick a seed
alignment image with the highest overall consistency; 3) Run max pooling to select a sparse
set of candidate keypoints; 4) Do thresholding to select a final high-quality set of keypoints;
5) Obtain the keypoint correspondences for the rest of the image set according to the flows
from the seed image to the target. Once the keypoints are established, standard AAM can
be applied (we used the package from [192]). Fig. 2.8 shows sample results on cars.

2.4.6 Runtime complexity

For 50 images of size 150⇥150, our algorithm takes about 10 iterations to converge, each
iteration taking about 10 minutes on a 3GHz, 16GB machine using a Matlab implementation.

CHAPTER 2. DENSE SEMANTIC CORRESPONDENCE THROUGH JOINT
ALIGNMENT 18

Synthesized

Retrieved

Synthesized

Retrieved

Consistency Map Unsupervised KeypointsA dataset sample

Component 1

Component 2

Figure 2.8: Visualization of unsupervised keypoint selection using cycle-consistency and its
application to AAM (see Sec. 2.4.5 for more details). By varying the coe�cients for AAM
shape components, one can synthesize new instances that pertain to the variations within
the image collection.

For 100 images, each iteration takes about an hour. There are two major computational
bottlenecks: 1) The computation of priority is O(MN

4); 2) Consistency-weighted filtering
is O(N2

M
2). One way to speed up the alignment process is to first break down the fully-

connected graph into sub-clusters (to reduce N) and optimize the flows within each cluster,
and then bring them together by connecting the closest matches between clusters. Our
preliminary experiments show that the overall alignment accuracy won’t be compromised
much with such approximation as long as the size of each cluster is still considerably large.
We plan to explore more options for e�ciency improvement in the future.

2.5 Discussion

Now that object detection and retrieval are finally starting to work, it’s possible to go
from a very large, unorganized image collection to a relatively small set of coarsely-aligned
images. But going from coarse to fine-grained pixel-wise correspondence is still very much
an open problem, which this chapter is aiming to tackle. A successful solution could benefit
many vision and graphics tasks. While achieving state-of-the-art performance, FlowWeb is
overly dependent on the initialization quality, and scales poorly with the size of the image

CHAPTER 2. DENSE SEMANTIC CORRESPONDENCE THROUGH JOINT
ALIGNMENT 19

collection. In the next chapter, we address these issues by presenting a framework for learning
dense correspondence networks with cycle consistency as the supervisory signal.

20

Chapter 3

Learning Dense Correspondence via

3D-guided Cycle Consistency

In the last chapter, we have shown that maximizing cycle consistency within an image
collection is e↵ective in obtaining high-quality dense correspondence. However, one issue
with such collection-based methods is that they require a large set of images during runtime,
which is often impractical. The natural question is: can we keep the same benefits of
matching through a large collection of related images without storing them “explicitly”?

Recently, deep learning approaches have shown impressive results for problems where
human-labeled ground truth is plentiful. However, for dense semantic correspondence it is
infeasible to collect large-scale human labels since each pair of images has hundreds and
thousands of pixel correspondences. Our key insight is that although we do not know what
the ground-truth is, we know it should be consistent across instances of that category.
We exploit this consistency as a supervisory signal to train a convolutional neural net-
work to predict cross-instance correspondences between pairs of images depicting objects
of the same category. For each pair of training images we find an appropriate 3D CAD
model and render two synthetic views to link in with the pair, establishing a correspon-
dence flow 4-cycle. We use ground-truth synthetic-to-synthetic correspondences, provided
by the rendering engine, to train a deep network to predict synthetic-to-real, real-to-real and
real-to-synthetic correspondences that are cycle-consistent with the ground-truth. At test
time, no CAD models are required. We demonstrate that our end-to-end trained network
supervised by cycle-consistency outperforms state-of-the-art pairwise matching methods in
correspondence-related tasks 1.

1This work was originally published as Learning dense correspondence via 3d-guided cycle consistency.
In CVPR, 2016 [232].

CHAPTER 3. LEARNING DENSE CORRESPONDENCE VIA 3D-GUIDED CYCLE
CONSISTENCY 21

synthetic s1 synthetic s2

real r1 real r2

F̃s1,s2

Fs1,r1

Fr1,r2

Fr2,s2

TRAINING TIME

Figure 3.1: Estimating a dense correspondence flow field Fr1,r2 between two images r1 and r2

— essentially, where do pixels of r1 need to go to bring them into correspondence with r2 —
is very di�cult. There is a large viewpoint change and the physical di↵erences between the
cars are substantial. We propose to learn to do this task by training a ConvNet using the
concept of cycle consistency in lieu of ground truth. At training time, we find an appropriate
3D CAD model and establish a correspondence 4-cycle, training to minimize the discrepancy
between F̃s1,s2 and Fs1,r1�Fr1,r2�Fr2,s2 , where F̃s1,s2 is known by construction. At test time, no
CAD models are used.

3.1 Motivation and background

In the past couple of years, deep learning has swept though computer vision like wildfire.
One needs only to buy a GPU, arm oneself with enough training data, and turn the crank to
see head-spinning improvements on most computer vision benchmarks. So it is all the more
curious to consider tasks for which deep learning has not made much inroad, typically due
to the lack of easily obtainable training data. One such task is dense visual correspondence
– the problem of estimating a pixel-wise correspondence field between images depicting
visually similar objects or scenes. Not only is this a key ingredient for optical flow and
stereo matching, but many other computer vision tasks, including recognition, segmentation,
depth estimation, etc. could be posed as finding correspondences in a large visual database
followed by label transfer.

In cases where the images depict the same physical object/scene across varying view-
points, such as in stereo matching, there is exciting new work that aims to use the common-
ality of the scene structure as supervision to learn deep features for correspondence [4, 47,
95, 69, 225]. But for computing correspondence across di↵erent object/scene instances, no
learning method to date has managed to seriously challenge SIFT flow [129], the dominant
approach for this task.

How can we get supervision for dense correspondence between images depicting di↵erent
object instances, such as images r1 and r2 in Figure 3.1? Our strategy is to learn the things
we don’t know by linking them up to the things we do know. In particular, at training time,
we use a large dataset of 3D CAD models [177] to find one that could link the two images, as

CHAPTER 3. LEARNING DENSE CORRESPONDENCE VIA 3D-GUIDED CYCLE
CONSISTENCY 22

shown in Figure 3.1. Here the dense correspondence between the two views of the same 3D
model s1 and s2 can serve as our ground truth supervision (as we know precisely where each
shape point goes when rendered in a di↵erent viewpoint), but the challenge is to use this
information to train a network that can produce correspondence between two real images at
test time.

A naive strategy is to train a network to estimate correspondence between the rendered
views of the same 3D model, and then hope that the network could generalize to real im-
ages as well. Unfortunately, this does not work in practice (see Table 3.1), likely due to
1) the large visual di↵erence between synthetic and real images and 2) the lack of cross-
instance ground truth correspondence for training. Instead, we utilize the concept of cycle
consistency of correspondence flows [87, 231, 236] – the notion that the composition of flow
fields for any circular path through the image set should have a zero combined flow. Here,
cycle consistency serves as a way to link the correspondence between real images and the
rendered views into a single 4-cycle chain. We can then train our correspondence network
using cycle consistency as the supervisory signal. The idea is to take advantage of the known
synthetic-to-synthetic correspondence as ground-truth anchors that allow cycle consistency
to propagate the correct correspondence information from synthetic to real images, without
diverging or falling into a trivial solution. Here we could interpret the cycle consistency
as a kind of “meta-supervision” that operates not on the data directly, but rather on how
the data should behave. As we show later, such 3D-guided consistency supervision allows
the network to learn cross-instance correspondence that potentially overcomes some of the
major di�culties (e.g. significant viewpoint and appearance variations) of previous pairwise
matching methods like SIFT flow [129]. Our approach could also be thought of as an ex-
tension and a reformulation of FlowWeb (described in the previous chapter) as a learning
problem, where the image collection is stored implicitly in the network representation.

Recently, several works have applied convolutional neural networks to learn same-instance
dense correspondence. FlowNet [45] learns an optical flow CNN with a synthetic Flying
Chairs dataset that generalizes well to existing benchmark datasets, yet still falls a bit short
of state-of-the-art optical flow methods like DeepFlow [205] and EpicFlow [165]. Several
recent works have also used supervision from reconstructed 3D scene and stereo pairs [69,
225, 4]. However all these approaches are inherently limited to matching images of the same
physical object/scene. Long et al. [135] use deep features learned from large-scale object
classification tasks to perform intra-class image alignment, but found it to perform similarly
to SIFT flow.

Our work is also partially motivated by recent progress in image-shape alignment that al-
lows establishing correspondence between images through intermediate 3D shapes. Aubry et
al. [6] learns discriminative patches for matching 2D images to their corresponding 3D CAD
models, while Peng et al. [156] utilizes CAD models to train object detectors with few shots
of labeled real images. In cases where depth data is available, deep learning methods have
recently been applied to 3D object recognition and alignment between CAD models and
RGB-D images [66, 181, 211]. Other works [86, 184] leverage image and shape collections
for joint pose estimation and refining image-shape alignment, which are further applied to

CHAPTER 3. LEARNING DENSE CORRESPONDENCE VIA 3D-GUIDED CYCLE
CONSISTENCY 23

single-view object reconstruction and depth estimation. Although our approach requires 3D
CAD models for constructing the training set, the image-shape alignment is jointly learned
with the image-image alignment, and no CAD models are required at test time.

3.2 Approach

Our goal is to predict a dense flow (or correspondence) field Fa,b : R2
! R2 between pairs

of images a and b. The flow field Fa,b(p) = (px � qx, py � qy) computes the relative o↵set
from each point p in image a to a corresponding point q in image b. Given that pairwise
correspondence might not always be well-defined (e.g. a side-view car and a frontal-view car
do not have many visible parts in common), we additionally compute a matchability map
Ma,b : R2

! [0, 1] predicting if a correspondence exists Ma,b(p) = 1 or not Ma,b(p) = 0.
We learn both the flow field and the matchability prediction with a convolutional neural

network. Both functions are di↵erentiable with respect to the network parameters, which
could be directly learned if we had dense annotations for Fa,b and Ma,b on a large set of real
image pairs. However, in practice it is infeasible to obtain those annotations at scale as they
are either too time-consuming or ambiguous to annotate.

We instead choose a di↵erent route, and learn both functions by placing the supervision
on the desired properties of the ground-truth, i.e. while we do not know what the ground-
truth is, we know how it should behave. In this chapter, we use cycle consistency with 3D
CAD models as the desired property that will be our supervisory signal. Specifically, for each
pair of real training images r1 and r2, we find a 3D CAD model of the same category, and
render two synthetic views s1 and s2 in similar viewpoint as r1 and r2, respectively (see 3.3.1
for more details). For each training quartet < s1, s2, r1, r2 > we learn to predict flows from
s1 to r1 (Fs1,r1) to r2 (Fr1,r2) to s2 (Fr2,s2) that are cycle-consistent with the ground-truth
flow from s1 to s2 (F̃s1,s2) provided by the rendering engine (similarly for the matchability
prediction). By constructing consistency supervision through 3D CAD models, we aim to
learn 2D image correspondences that potentially captures the 3D semantic appearance of
the query objects. Furthermore, making F̃s1,s2 be ground-truth by construction prevents the
cycle-consistency optimization from producing trivial solutions, such as identity flows.

Sections 3.2.1 and 3.2.2 formally define our training objective for learning correspondence
F and matchability M , respectively. Section 3.2.3 demonstrates how to obtain continuous
approximation of discrete maps that allows end-to-end training. Section 3.2.4 describes our
network architecture.

3.2.1 Learning dense correspondence

Given a set of training quartets {< s1, s2, r1, r2 >}, we train the CNN to minimize the
following objective: X

<s1,s2,r1,r2>

Lflow

⇣
F̃s1,s2 , Fs1,r1�Fr1,r2�Fr2,s2

⌘
, (3.1)

CHAPTER 3. LEARNING DENSE CORRESPONDENCE VIA 3D-GUIDED CYCLE
CONSISTENCY 24

where F̃s1,s2 refers to the ground-truth flow between two synthetic views, Fs1,r1 , Fr1,r2 and
Fr2,s2 are predictions made by the CNN along the transitive path. The transitive flow
composition F̄a,c = Fa,b � Fb,c is defined as

F̄a,c(p) = Fa,b(p) + Fb,c(p+ Fa,b(p)) , (3.2)

which is di↵erentiable as long as Fa,b and Fb,c are di↵erentiable. Lflow(F̃s1,s2 , F̄s1,s2) denotes
the truncated Euclidean loss defined as

Lflow(F̃s1,s2 , F̄s1,s2) =
X

p|M̃s1,s2 (p)=1

min(kF̃s1,s2(p)� F̄s1,s2(p)k
2
, T

2) , (3.3)

where M̃s1,s2(p) is the ground-truth matchability map provided by the rendering engine
(M̃s1,s2(p) = 0 when p is either a background pixel or not visible in s2), and T = 15 (pixels)
for all our experiments. In practice, we found the truncated loss to be more robust to spurious
outliers for training, especially during the early stage when the network output tends to be
highly noisy.

3.2.2 Learning dense matchability

Our training objective for matchability prediction also utilizes the cycle consistency sig-
nal: X

<s1,s2,r1,r2>

Lmat

⇣
M̃s1,s2 , Ms1,r1�Mr1,r2�Mr2,s2

⌘
, (3.4)

where M̃s1,s2 refers to the ground-truth matchability map between the two synthetic views,
Ms1,r1 , Mr1,r2 and Mr2,s2 are CNN predictions along the transitive path, and Lmat denotes
per-pixel cross-entropy loss. The matchability map composition is defined as

M̄a,c(p) = Ma,b(p)Mb,c(p+ Fa,b(p)) , (3.5)

where the composition depends on both the matchability as well as the flow field.
Due to the multiplicative nature in matchability composition (as opposed to additive in

flow composition), we found that training with objective 3.4 directly results in the network
exploiting the clean background in synthetic images, which helps predict a perfect segmen-
tation of the synthetic object in Ms1,r1 . Once Ms1,r1 predicts zero values for background
points, the network has no incentive to correctly predict the matchability for background
points in Mr1,r2 , as the multiplicative composition has zero values regardless of the transitive
predictions along Mr1,r2 and Mr2,s2 . To address this, we fix Ms1,r1 = 1 and Mr2,s2 = 1, and
only train the CNN to infer Mr1,r2 . This assumes that every pixel in s1(s2) is matchable
in r1(r2), and allows the matchability learning to happen between real images. Note that
this is still di↵erent from directly using M̃s1,s2 as supervision for Mr1,r2 as the matchability
composition depends on the predicted flow field along the transitive path.

The matchability objective 3.4 is jointly optimized with the flow objective 3.1 during
training, and our final objective can be written as

P
<s1,s2,r1,r2>

Lflow + �Lmat with � = 100.

CHAPTER 3. LEARNING DENSE CORRESPONDENCE VIA 3D-GUIDED CYCLE
CONSISTENCY 25

3.2.3 Continuous approximation of discrete maps

An implicit assumption made in our derivation of the transitive composition (Eq. 3.2
and 3.5) is that F and M are di↵erentiable functions over continuous input, while images in-
herently consist of discrete pixel grids. To allow end-to-end training with stochastic gradient
descent (SGD), we obtain continuous approximation of the full flow field and the matcha-
bility map with bilinear interpolation over the CNN predictions on discrete pixel locations.
Specifically, for each discrete pixel location p̂ 2 {1, . . . ,W} ⇥ {1, . . . , H}, the network pre-
dicts a flow vector Fa,b(p̂) as well as a matchability score Ma,b(p̂), and the approximation
over all continuous points p 2 [1,W]⇥ [1, H] is obtained by:

Fa,b(p) =
X

p̂2Np

(1� |px � p̂x|)(1� |py � p̂y|)Fa,b(p̂)

Ma,b(p) =
X

p̂2Np

(1� |px � p̂x|)(1� |py � p̂y|)Ma,b(p̂) ,

where Np denotes the four-neighbor pixels (top-left, top-right, bottom-left, bottom-right) of
point p, or just p if it is one of the discrete pixels. This is equivalent to the di↵erentiable
image sampling with a bilinear kernel proposed in [92].

3.2.4 Network architecture

Our network architecture (see 3.2) follows the encoder-decoder design principle with
three major components: 1) feature encoder of 8 convolution layers that extracts rele-
vant features from both input images with shared network weights; 2) flow decoder of
9 fractionally-strided/up-sampling convolution (uconv) layers that assembles features from
both input images, and outputs a dense flow field; 3) matchability decoder of 9 uconv lay-
ers that assembles features from both input images, and outputs a probability map indicating
whether each pixel in the source image has a correspondence in the target.

All conv/uconv layers are followed by rectified linear units (ReLUs) except for the last
uconv layer of either decoder, and the filter size is fixed to 3 ⇥ 3 throughout the whole
network. No pooling layer is used, and the stride is 2 when increasing/decreasing the spatial
dimension of the feature maps. The output of the matchability decoder is further passed to
a sigmoid layer for normalization.

During training, we apply the same network to three di↵erent input pairs along the cycle
(s1 ! r1, r1,! r2, and r2 ! s2), and composite the output to optimize the consistency
objectives 3.1 and 3.4.

3.3 Experimental Evaluation

In this section, we describe the details of our network training procedure, and evaluate
the performance of our network on correspondence and matchability tasks.

CHAPTER 3. LEARNING DENSE CORRESPONDENCE VIA 3D-GUIDED CYCLE
CONSISTENCY 26

128

8

3 Source

Target

Weight
sharing

128
64 64 32 32

16 16

16
32 32

64 64 128 128 256

128

8

3

128
64 64 32 32

16 16

16
32 32

64 64 128 128 256

8 16 16
32 32 64 64 128 128

8 16 16 32 32 64 64 128 128

512 256 256
128 128

64 64
32 2

256 128 128
64 64

32 32
16 2

Flow field

Matchability

Figure 3.2: Overview of our network architecture, which consists of three major components:
1) feature encoder on both input images, 2) flow decoder predicting the dense flow field
from the source to the target image and 3)matchability decoder that outputs a probability
map indicating whether each pixel in the source image has a correspondence in the target.
See Section 3.2.4 for more details.

3.3.1 Training set construction

The 3D CAD models we used for constructing training quartets come from the ShapeNet
database [177], while the real images are from the PASCAL3D+ dataset [212]. For each
object instance (cropped from the bounding box and rescaled to 128⇥128) in the train split
of PASCAL3D+, we render all 3D models under the same camera viewpoint (provided by
PASCAL3D+), and only use K = 20 nearest models as matches to the object instance based
on the HOG [30] Euclidean distance. We then construct training quartets each consisting of
two real images (r1 and r2) matched to the same 3D model and their corresponding rendered
views (s1 and s2). On average, the number of valid training quartets for each category is
about 80, 000.

3.3.2 Network training

We train the network in a category-agnostic manner (i.e. a single network for all cate-
gories). We first initialize the network (feature encoder + flow decoder pathway) to mimic
SIFT flow by randomly sampling image pairs from the training quartets and training the
network to minimize the Euclidean loss between the network prediction and the SIFT flow
output on the sampled pair2. Then we fine-tune the whole network end-to-end to mini-
mize the consistency loss defined in Eq. 3.1 and 3.4. We use the ADAM solver [114] with
�1 = 0.9, �2 = 0.999, initial learning rate of 0.001, step size of 50, 000, step multiplier of 0.5
for 200, 000 iterations. We train with mini-batches of 40 image pairs during initialization
and 10 quartets during fine-tuning.

2We also experimented with other initialization strategies (e.g. predicting ground-truth flows between
synthetic images), and found that initializing with SIFT flow output works the best.

CHAPTER 3. LEARNING DENSE CORRESPONDENCE VIA 3D-GUIDED CYCLE
CONSISTENCY 27

Training iterations

Figure 3.3: Visualizing the e↵ects of consistency training on the network output. The
randomly sampled ground-truth correspondences between synthetic images are marked in
solid lines, and the correspondence predictions along the cycle (synthetic to real, real to real
and real to synthetic) made by our network are marked in dashed lines. One can see that
the transitive composition of our network output becomes more and more consistent with
the ground-truth as training progresses, while individual correspondences along each edge of
the cycle also tend to become more semantically plausible.

aero bike boat bottle bus car chair table mbike sofa train tv mean

SIFT flow [129] 9.8 23.3 8.9 28.3 28.6 22.4 10.8 13.2 17.9 14.2 14.4 42.9 19.6
Long et al. [135] 10.4 22.8 7.6 30.8 28.4 21.1 10.2 12.7 13.5 12.9 12.6 38.5 18.5

CNNI2S 9.1 14.7 5.2 25.9 25.4 23.7 11.9 11.3 13.4 16.8 11.3 45.2 17.8
CNNinit 8.6 20.3 8.5 29.4 24.3 20.1 9.9 11.6 15.4 11.6 12.5 40.2 17.7

CNNinit+ Synthetic ft. 10.2 22.2 8.7 30.4 24.5 21.3 10.2 12.1 15.7 12.0 12.8 40.5 18.4
CNNinit+ Consistency ft. 11.3 22.3 10.1 40.3 40.3 33.3 15.0 13.2 17.2 17.4 16.7 51.1 24.0

Table 3.1: Keypoint transfer accuracy measured in PCK (↵ = 0.1) on the PASCAL3D+ cat-
egories. Overall, our final network (last row) outperforms all baselines (except on “bicycle”
and “motorbike”). Notice the performance gap between our initialization (CNNinit) and the
final network, which highlights the improvement made by cycle-consistency training.

We visualize the e↵ect of our cycle-consistency training in Figure 3.3, where we sample
some random points in the synthetic image s1, and plot their predicted correspondences
along the cycle s1 ! r1 ! r2 ! s2 to compare with the ground-truth in s2. One can see
that the transitive trajectories become more and more cycle-consistent with more iterations
of training, while individual correspondences along each edge of the cycle also tend to become
more semantically plausible.

CHAPTER 3. LEARNING DENSE CORRESPONDENCE VIA 3D-GUIDED CYCLE
CONSISTENCY 28

Source

Target

SIFTflow

Ours init.

Ours final

Figure 3.4: Comparison of keypoint transfer performance for di↵erent methods on example
test image pairs. Overall, our consistency-supervised network (second-to-last row) is able to
produce more accurate keypoint transfer results than the baselines. The last column shows
a case when SIFT flow performs better than ours.

3.3.3 Keypoint transfer

We evaluate the quality of our correspondence output using the keypoint transfer task
on the 12 categories from PASCAL3D+ [212]. For each category, we exhaustively sample
all image pairs from the val split (not seen during training), and determine if a keypoint in
the source image is transferred correctly by measuring the Euclidean distance between our
correspondence prediction and the annotated ground-truth (if exists) in the target image. A
correct transfer means the prediction falls within ↵ ·max(H,W) pixels of the ground-truth
with H and W being the image height and width, respectively (both are 128 pixels in our
case). We compute the percentage of correct keypoint transfer (PCK) over all image pairs
as the metric, and provide performance comparison for the following methods in Table 3.1:

• SIFT flow [129] – A classic method for dense correspondence using SIFT feature de-
scriptors and hand-designed smoothness and large-displacement priors. We also ran
preliminary evaluation on a more recent follow-up based on deformable spatial pyra-
mids [110], and found it to perform similarly to SIFT flow.

• Long et al. [135] – Similar MRF energy minimization framework as SIFT flow but with
deep features learned from the ImageNet classification task.

• CNNI2S – Our network trained on real image pairs with correspondence inferred by
compositing the output of an o↵-the-shelf image-to-shape alignment algorithm [86] and
the ground-truth synthetic correspondence (i.e. obtaining direct supervision for Fr1,r2

through Fr1,s1 � F̃s1,s2 � Fs2,r2 , where Fr1,s1 and Fs2,r2 are inferred from [86]).

• CNNinit – Our network trained to mimic SIFT flow.

CHAPTER 3. LEARNING DENSE CORRESPONDENCE VIA 3D-GUIDED CYCLE
CONSISTENCY 29

Source

Our
prediction

Ground-truth

Target

Figure 3.5: Sample visualization of our matchability prediction. Notice how the predic-
tion varies for the same source image when changing only the target image. The last two
columns demonstrate a typical failure mode of our network having trouble localizing the fine
boundaries of the matchable regions.

• CNNinit+ Synthetic ft. – fine-tuning on synthetic image pairs with ground-truth cor-
respondence after initialization with SIFT flow.

• CNNinit+ Consistency ft. – fine-tuning with our objectives 3.1 and 3.4 after initializa-
tion with SIFT flow.

Overall, our consistency-supervised network significantly outperforms all other methods
(except on “bicycle” and “motorbike” where SIFT flow has a slight advantage). Notice the
significant improvement over the initial network after consistency fine-tuning. The perfor-
mance gap between the last two rows of Table 3.1 suggests that consistency supervision
is much more e↵ective in adapting to the real image domain than direct supervision from
synthetic ground-truth.

Figure 3.4 compares sample keypoint transfer results using di↵erent methods. In general,
our final prediction tends to match the ground-truth much better than the other baselines,
and could sometimes overcome substantial viewpoint and appearance variation where previ-
ous methods, like SIFT flow, are notoriously error-prone.

3.3.4 Matchability prediction

We evaluate matchability prediction using the PASCAL-Part dataset [24], which provides
human-annotated part segment labeling3. For each test image pair, a pixel in the source
image is deemed matchable if there exists another pixel in the target image that shares the
same part label, and all background pixels are unmatchable. We measure the performance
by computing the percentage of pixels being classified correctly. For our method, we classify
a pixel as matchable if its probability is > 0.5 according to the network prediction. To

3For categories without part labels, including boat, chair, table and sofa, we use the foreground segmen-
tation mask instead.

CHAPTER 3. LEARNING DENSE CORRESPONDENCE VIA 3D-GUIDED CYCLE
CONSISTENCY 30

aero bike boat bottle bus car chair table mbike sofa train tv mean

SIFT flow [129] 66.2 62.7 49.5 50.5 52.0 64.5 50.7 50.5 80.6 49.6 58.5 50.2 57.1
Ours 75.8 61.0 66.7 67.1 67.3 72.0 66.1 68.4 68.0 71.2 64.4 65.1 67.8

Table 3.2: Performance comparison of matchability prediction between SIFT flow and our
method (higher is better). See Section 3.3.4 for more details on the experiment setup.

obtain matchability prediction for SIFT flow, we compute the L1 norm of the SIFT feature
matching error for each source pixel after the alignment, and a pixel is predicted to be
matchable if the error is below a certain threshold (we did grid search on the training set
to determine the threshold, and found 1, 000 to perform the best). Table 3.2 compares the
classification accuracy between our method and SIFT flow prediction (chance performance
is 50%). Our method significantly outperforms SIFT flow on all categories except “bicycle”
and “motorbike” (67.8% vs. 57.1% mean accuracy).

We visualize some examples of our matchability prediction in Figure 3.5. Notice how the
prediction varies when the target image changes with the source image being the same.

3.3.5 Shape-to-image segmentation transfer

Although so far we are mostly interested in finding correspondence between real images,
a nice byproduct of our consistency training is that the network also implicitly learns cross-
domain, shape-to-image correspondence, which allows us to transfer per-pixel labels (e.g.
surface normals, segmentation masks, etc.) from shapes to real images. As a proof of
concept, we ran a toy experiment on the task of segmentation transfer. Specifically, we
construct a shape database of about 200 shapes per category, with each shape being rendered
in 8 canonical viewpoints. Given a query real image, we apply our network to predict the
correspondence between the query and each rendered view of the same category, and warp
the query image according to the predicted flow field. Then we compare the HOG Euclidean
distance between the warped query and the rendered views, and retrieve the rendered view
with minimum error whose correspondence to the query image on the foreground region
is used for segmentation transfer. Figure 3.6 shows sample segmentation using di↵erent
methods. We can see that our learned flows tend to produce more accurate segmentation
transfer than SIFT flow using the same pipeline. In some cases our output can even segment
challenging parts such as the bars and wheels of the chairs.

3.4 Discussion

In this chapter, we described a framework for using cycle-consistency as a supervisory
signal to learn dense cross-instance correspondences. Not only did we find that this kind of
supervision is surprisingly e↵ective, but also that the idea of learning with cycle-consistency
could potentially be fairly general. One could apply the same idea to construct other training

CHAPTER 3. LEARNING DENSE CORRESPONDENCE VIA 3D-GUIDED CYCLE
CONSISTENCY 31

Query Dense CRF SIFTflow Ours Ret. Shape

Figure 3.6: Visual comparison among di↵erent segmentation methods. From left to right:
input query image, segmentation by [115], segmentation transferred using SIFT flow, seg-
mentation transferred using our flow and the retrieved shape whose segmentation is used for
transferring. See Section 3.3.5 for more details.

scenarios, as long as the ground-truth of one or more edges along the cycle is known. Since the
publication of this work, cycle consistency has been successfully applied to other domains too
such as unpaired image-to-image translation [238, 112] and single-view depth estimation [59].
We hope that this work will inspire more e↵orts to tackle tasks with little or no direct labels
by exploiting cycle consistency or other types of indirect or “meta”-supervision.

32

Part II

Learning scene geometry

33

Chapter 4

View Synthesis by Appearance Flow

This chapter addresses the problem of novel view synthesis: given an input image, syn-
thesizing new images of the same object or scene observed from arbitrary viewpoints. We
approach this as a learning task but, critically, instead of learning to synthesize pixels from
scratch, we learn to copy them from the input image. Our approach exploits the observa-
tion that the visual appearance of di↵erent views of the same instance is highly correlated,
and such correlation could be explicitly learned by training a convolutional neural network
(CNN) to predict appearance flows – 2-D coordinate vectors specifying which pixels in the in-
put view could be used to reconstruct the target view. Furthermore, the proposed framework
easily generalizes to multiple input views by learning how to optimally combine single-view
predictions. We show that for both objects and scenes, our approach is able to synthesize
novel views of higher perceptual quality than previous CNN-based techniques at the time of
publication 1.

Notice that the appearance flows naturally emerge as the result of learning view synthesis
as we did not need to provide any ground-truth supervision for the flows. The emergence
of explicit pixel associations further inspired the work in the next two chapters, where we
utilize this observation to learn scene geometry without labeled data.

4.1 Introduction

When we look at a 2D image, numerous psychophysics experiments tell us that what we
are seeing is not the 2D image but the 3D object that it represents. For example, one classic
experiment demonstrates that people excel at “mental rotation” [178] – predicting what a
given object would look like after a known 3D rotation is applied. In this paper, we study
the computational equivalent of mental rotation called novel view synthesis. Given one or
more input images of an object or a scene plus the desired viewpoint transformation, the
goal is to synthesize a new image capturing this novel view.

1This work was originally published as View Synthesis by Appearance Flow. In ECCV, 2016 [235].

CHAPTER 4. VIEW SYNTHESIS BY APPEARANCE FLOW 34

Besides purely academic interest (how well can this be done?), novel view synthesis has
a plethora of practical applications, mostly in computer graphics and virtual reality. For
example, it could enable photo editing programs like Photoshop to manipulate objects in
3D instead of 2D. Or it could help create full virtual reality environments based on historic
images or video footage.

The ways that novel view synthesis has been approached in the past fall into two
broad categories: geometry-based approaches and learning-based approaches. Geometric
approaches try to first estimate (or fake) the approximate underlying 3D structure of the
object, and then apply some transformation to the pixels in the input image to produce the
output [83, 154, 226, 81, 230, 23, 109]. Besides the requirement of somehow estimating the
3D structure, which is a di�cult task by itself, the other major downside of these methods
is that they produce holes in places where the source image does not have the appropriate
visual content (e.g. the back side of an object). In such cases, various types of texture
hole-filling are sometimes used but they are not always e↵ective.

Learning-based approaches, on the other hand, argue that novel view synthesis is funda-
mentally a learning problem, because otherwise it is woefully underconstrained. Given a side
of a car, there is no way to ever guess what the front of this car looks like, unless the system
has observed other fronts of cars so it can make an educated guess. Such methods typically
try, at training time, to build a parametric model of the object class, and then use it at test
time, together with the input image, to generate a novel view. Unfortunately, parametric
image generation is an open research topic, and currently the results of such methods are
often too blurry).

In this chapter, we propose to combine the benefits of both types of approaches, while
also avoiding their pitfalls. Like geometric methods, we propose to use the pixels of the
input image as much as possible, instead of trying to synthesize new ones from scratch. At
the same time, we will use a learning-based approach to implicitly capture the approximate
geometry of the object, avoiding the explicit estimation of the 3D structure. Our model
also learns the appearance correlation between di↵erent parts of the object that enables
synthesizing the backside of the object.

Conceptually, our approach is quite simple: we train a deep generative convolutional
encoder-decoder model, similar to [188], but instead of generating RGB values for each
pixel in the target view, we generate an appearance flow vector indicating the corresponding
pixel in the input view to steal from. This way, the model does not need to learn how
to generate pixels from scratch – just where to copy from the input view. In addition to
making the learning problem more tractable, it also provides a natural way of preserving
the identity and structure of the input instance – a task typically di�cult for conventional
learning approaches. We demonstrate the applicability of our approach by synthesizing
views corresponding to rotation of objects and ego-motion in scenes. We further extend our
framework to leverage multiple input views and empirically show the quantitative as well as
perceptual improvements obtained with our approach.

CHAPTER 4. VIEW SYNTHESIS BY APPEARANCE FLOW 35

4.2 Background

Feature learning by disentangling pose and identity. Synthesizing novel views of
objects can be thought of as decoupling pose and identity and has long been studied as
part of feature learning and view-invariant recognition. Hinton et al. [79] learned a hier-
archy of “capsules”, computational units that locally transform their input, for generating
small rotations to an input stereo pair, and argued for the use of similar units for recogni-
tion. More recently, Jaderberg et al. [93] demonstrated the use of computational layers that
perform global spatial transformation over their input features as useful modules for recog-
nition tasks. Jayaraman et al. [94] studied the task of synthesizing features transformed
by ego-motion and demonstrated its utility as an auxiliary task for learning semantically
useful feature space. Cheung et al. [26] proposed an auto-encoder with decoupled semantic
units representing pose, identity etc. and latent units representing other factors of variation
and showed that their approach was capable of generating novel views of faces. Kulkarni et
al. [117] introduced a similarly motivated variational approach for decoupling and manip-
ulating the factors of variation for images of faces. While the feature-learning approaches
convincingly demonstrated the ability to disentangle factors of variation, the view manipu-
lations demonstrated were typically restricted to small rotations or categories with limited
shape variance like digits and faces.
CNNs for view synthesis. A recent interest in learning to synthesize views for more
challenging objects under diverse view variations has been driven by the ability of Convo-
lutional Neural Networks (CNNs) [51, 123] to function as image decoders. Dosovitiskiy et
al. [2] learned a CNN capable of functioning as a renderer: given an input graphics code
containing identity, pose, lighting etc. their model could render the corresponding image of
a chair. Yang et al. [216] and Tatarchenko et al. [188] built on this work using the insight
that the graphics code, instead of being presented explicitly, can be implicitly captured by
an example source image along with the desired transformation. Yang et al. [216] learned
a decoder to obtain implicit pose and identity units from the input source image, applied
the desired transformation to the pose units, and used a decoder CNN to render the desired
view. Concurrently, Tatarchenko et al. [188] followed a similar approach without the ex-
plicit decoupling of identity and pose to obtain similar results. A common module in these
approaches is the use of a decoder CNN to generate the pixels corresponding to the trans-
formed view from an implicit/explicit graphics code. Our work demonstrates that predicting
appearance flows instead of pixels leads to significant improvements.
Geometric view synthesis. An alternative paradigm for synthesizing novel views of an
object is to explicitly model the underlying 3D geometry. In cases when more than one input
view is available, modern multi-view stereo algorithms (see Furukawa and Hernandez [52] for
an excellent tutorial) have demonstrated results of impressive visual quality. However, these
methods fundamentally rely on finding visual correspondences – pixels that is in common
across the views – so they break down when there are only a couple of views from very
di↵erent viewpoints. In cases when only a single view is available, user interaction had
typically been needed to help define a coarse geometry for the object or scene [83, 154,

CHAPTER 4. VIEW SYNTHESIS BY APPEARANCE FLOW 36

226, 230, 23]. More recently, large Internet collections of stock 3D shape models have been
leveraged to get 3D geometry for a wide range of common objects. For example, Kholgade
et al. [109] obtained realistic renderings of novel views of an object by transferring texture
from the corresponding 3D model, though they required manual annotation of the exact 3D
model and its placement in the image. Rematas et al. [163] employed a similar technique
after automatically inferring the closest 3D model from a shape collection as well as explicitly
obtaining pose via a learnt system to situate the 3d model in the image. Their approach,
however, is restricted to rendering the closest model in the shape collection instead of the
original object. Su et al. [183] overcome this restriction by interpolating between several
similar models from the shape collections, though they only demonstrate their technique for
generating HOG [31] features for novel views. Unlike the CNN based learning approaches,
these geometry-based methods require access to a shape collection during inference and are
limited by the intermediate bottlenecks of inferring pose and retrieving similar models.
Image-based Rendering. The idea of directly re-using the pixels from available images
to generate new views has been popular in computer graphics. Debevec et al. [32] used
the underlying geometry to composite multiple views for rendering novel views. Light-
field/lumigraph [126, 64] rendering presented an alternate setup where a structured, dense set
of views is available. Buehler et al. [13] presented a unifying framework for these image-based
rendering techniques. The recent DeepStereo work by Flynn et al. [48] is a learning-based
extension that performs compositing through learned geometric reasoning using a CNN, and
can generate intermediate views of a scene by interpolating from a set of surrounding views.
While these methods yield high-quality novel views, they do so by composting the corre-
sponding input image rays for each output pixel and can therefore only generate already
seen content, (e.g. they cannot create the rear-view of a car from available frontal and
side-view images).
Texture Synthesis and Epitomes. Reusing pixels of the input image to synthesize new
visual context is also at the heart of non-parametric texture synthesis approaches. In texture
synthesis [39, 9], the synthesized image is pieced together by combining samples of the input
texture image in a visually consistent way, whereas for texture transfer [78, 38], an additional
constraint aims to make the overall result also mimic a secondary “source” image. A related
line of work uses epitomes [98] as a generative model for a set of images. The key idea is
to use a condensed image as a palette for sampling patches to generate new images. In a
similar spirit, our approach can be thought of as generating novel views of an object using
the original image as an epitome.

4.3 Approach

Our approach to novel view synthesis is based on the observation that the appearance
(texture, shape, color, etc.) of di↵erent views of the same object/scene is highly correlated,
and in many cases even a single input view contains rich amount of information for inferring
various novel views. For instance, given the side view of a car, one could extract appearance

CHAPTER 4. VIEW SYNTHESIS BY APPEARANCE FLOW 37

properties such as the 3D shape, body color, window layout and wheel types of the query
instance that are su�cient for reconstructing many other views.

In this work, we explicitly infer the appearance correlation between di↵erent views of
a given object/scene by training a convolutional neural network that takes 1) an input
view and 2) a desired viewpoint transformation, and predicts a dense appearance flow field
(AFF) that specifies how to reconstruct the target view using pixels from the input view.
Specifically, for each pixel i in the target view, the appearance flow vector f (i)

2 R2 specifies
the coordinate at the input view where the pixel value is sampled to reconstruct pixel i.
The notion of appearance flow field is closely related to the nearest neighbor field (NNF) in
PatchMatch [9], except that NNF is explicitly defined on a distance function between two
patches, while our appearance flow field is the output of a CNN after end-to-end training
for cross-view reconstruction.

The benefits of predicting the appearance flow field over raw pixels of the target view are
three-fold: 1) It alleviates the perceptual blurriness in images generated by CNN trained with
Lp loss. By constraining the CNN to only utilize pixels available in the input view, we are
able to avoid the undesirable local minimum attained by predicting the mean (when p = 2)
colors around texture/edge boundaries that lead to blurriness in the resulting image (e.g.
see Section 4.4 for empirical comparison). 2) The color identity of the instance is preserved
by construction since the synthesized view is reconstructed using only pixels from the same
instance; 3) The appearance flow field enables intuitive interpretation of the network output
since we can visualize exactly how the target view is constructed with the input pixels (e.g.
see Figure 4.5).

We first describe our training objective and the network architecture for the setting of
a single input view in Section 4.3.1, and then present a simple extension in Section 4.3.2
that allows the network to learn how to combine individual predictions when multiple input
views are available.

4.3.1 Learning view synthesis via appearance flow

Recall that our goal is to train a CNN that, given an input view Is and a relative viewpoint
transformation T , synthesizes the target view It by sampling pixels from Is according to the
predicted appearance flow field. This can be formalized as minimizing the following objective:

minimize
X

<Is,It,T>2D

kIt � g(Is, T)kp, subject to g
(i)(Is, T) 2 {Is}, 8i , (4.1)

where D is the set of training tuples, g(·) refers to the CNN whose weights we wish to
optimize, k · kp denotes the Lp norm2, and i indexes over pixels of the synthesized view.
Internally, the CNN computes a dense flow field f , where each element f

(i) = (x(i)
, y

(i))
specifies the pixel sampling location (in the coordinate frame of the input view) for con-
structing the output g(i)(Is, T). To allow end-to-end training via stochastic gradient descent

2We use p = 1 in all our experiments, but similar results can be obtained with L2 norm as well.

CHAPTER 4. VIEW SYNTHESIS BY APPEARANCE FLOW 38

when f
(i) falls into a sub-pixel coordinate, we rewrite the constraint of Eq. 4.1 in the form

of bilinear interpolation:

g
(i)(Is, T) =

X

q2{neighbors of (x(i),y(i))}

I
(q)
s (1� |x

(i)
� x

(q)
|)(1� |y

(i)
� y

(q)
|) , (4.2)

where q denotes the 4-pixel neighbors (top-left, top-right, bottom-left, bottom-right) of
(x(i)

, y
(i)). This is also known as di↵erentiable image sampling with a bilinear kernel, and its

(sub)-gradient with respect to the CNN parameters could be e�ciently computed [93].
Network architecture Our view synthesis network (Figure 4.1) follows a similar high-
level design as [216] and [188] with three major components:

1. Input view encoder – extracts relevant features (e.g. color, pose, texture, shape, etc.)
of the query instance (6 conv + 2 fc layers).

2. Viewpoint transformation encoder – maps the specified relative viewpoint to a higher-
dimensional hidden representation (2 fc layers).

3. Synthesis decoder – assembles features from the two feature encoders, and outputs the
appearance flow field that reconstructs the target view with pixels from the input view
(2 fc + 6 uconv layers).

All the convolution, fully-connected and fractionally-strided/up-sampling convolution (uconv)
layers are followed by rectified linear units except for the last flow decoder layer.
Foreground prediction For synthesizing object views, we also train another network
that predicts the foreground segmentation mask of the target view. The architecture is the
same as the synthesis network in Figure 4.1, except that in this case the last layer predicts a
per-pixel binary classification mask (0 is background and 1 is foreground), and the network
is trained with cross-entropy loss. At test time, we further apply the predicted foreground
mask to the synthesized view.

4.3.2 Learning to leverage multiple input views

A single view of the object sometimes might not contain su�cient information for inferring
an arbitrary target view. For instance, it would be very challenging to infer the texture details
of the wheel spoke given only the frontal view of a car, and similarly, the side view of a car
contains little to none information about the appearance of the head lights. Thus, it would
be ideal to develop a mechanism that could leverage the individual strength of di↵erent input
views to synthesize target views that might not be feasible with any input view alone.

To achieve this, we modify our view synthesis network to also output a soft confidence
mask Cj that indicates per-pixel prediction quality using input view sj, which could be
implemented by adding an extra output channel to the last decoder layer. The confidence
masks for all input views are further normalized to sum to one at each pixel location: C̄(i)

j =

CHAPTER 4. VIEW SYNTHESIS BY APPEARANCE FLOW 39

224
28 14

7
4

3
64 128 256

512

4096 4096 32 16

112 56

128
19

4096

4096

256

8

64

15

256
128 64

32 2

29
57

113 224

16

225

Input view

Synthesized
view

Viewpoint
transformation

Bilinear
Sampling

Figure 4.1: Overview of our single-view network architecture. We follow an encoder-decoder
framework where the input view and the desired viewpoint transformation are first encoded
via several convolution and fully-connected layers, and then a decoder consisting of two fully-
connected and six up-sampling convolution layers outputs an appearance flow field, which
in conjunction with the input view yields the synthesized view through a bilinear sampling
layer. All the layer weights are learned end-to-end through back-propagation.

C
(i)
j /

PN
k=1 C

(i)
k , where N denotes the number of input views. Intuitively, C̄(i)

j is an estimator
of relative prediction quality using input view j at pixel i, and by using C̄j as a hypothesis
selection mask, the final joint prediction is simply a weighted combination of hypotheses
predicted by di↵erent input views:

PN
j=1 C̄j ⇤g(Isj , rj). Figure 4.2 illustrates the architecture

of our multi-view network that is also end-to-end learnable.
Comparison with DeepStereo [48] While the general idea of learning hypothesis
selection for view synthesis has been recently explored in [48], there are a few key di↵erences
between our framework and [48]: 1) We do not require projecting the input image stack onto
a planesweep volume that prohibits their method from synthesizing pixels that are invisible
in the input views (i.e. view extrapolation); 2) Unlike [48], who have a fixed number of input
views, our multi-view network is more flexible at both training and test time as it could take
in an arbitrary number of input views for joint prediction, which is particularly beneficial
when the number of input views varies at test time.

CHAPTER 4. VIEW SYNTHESIS BY APPEARANCE FLOW 40

Single View
CNN

�

Input Tuples
Single-view
prediction

Selection
Mask

Final
Prediction

T1(),

,() Single View
CNN

Tied
Weights

TN

Figure 4.2: Overview of our multi-view network architecture (⌦: per-pixel product, �: per-
pixel normalized sum). For each input view, we use a single-view CNN (same as Figure 4.1
but with an extra output channel) with shared weights to independently predict the target
view as well as a per-pixel selection/confidence mask. The final target view prediction is
obtained by linearly combining the predictions from each view weighted by the selection
masks.

4.4 Experiments

To evaluate the performance of our view synthesis approach, we conduct experiments
on ShapeNet objects, including car and chair. Our main baseline is the recent work of
Tatarchenko et al [188] that synthesizes novel views by training a CNN to directly generate
pixels. For fair comparison, we use the same number of network layers for their method
and ours, and for experiments on multiple input views we extend their method to output
hypothesis selection masks as described in Section 4.3.2.
Network training details We train the networks using a modified version of Ca↵e [96] to
support the bilinear sampling layer. We use the ADAM solver [114] with �1 = 0.9, �2 = 0.999,
initial learning rate of 0.0001, step size of 50, 000 and a step multiplier � = 0.5.

4.4.1 Novel view synthesis for objects

Data setup We train and evaluate our view synthesis CNN for objects using the ShapeNet
database [17]. In particular, we split the available shapes (7, 497 cars and 700 chairs3) of
each category into 80% for training and 20% for testing. For each shape, we render a total
of 504 viewing angles (azimuth ranges from 0 to 355 degrees, and elevation ranges from 0 to
30 degrees, both at steps of 5 degrees) with fixed camera distance. For simplicity, we limit
the viewpoint transformation for CNN to a discrete set of 19 azimuth variations ranging

3The original ShapeNet core release contains a total of 6, 778 chair models. However, a majority of the
models are of low visual quality (e.g. texture-less), and we only keep a subset of 700 high-quality ones for
our experiments.

CHAPTER 4. VIEW SYNTHESIS BY APPEARANCE FLOW 41

Input view

Tatarchenko
et al. [1]

Our
prediction

Ground-truth
view

Figure 4.3: Comparison of our single-view synthesis results with the baseline method [188]
on cars (left) and chairs (right). Our prediction tends to be consistently better at preserving
high-frequency details (e.g. texture and edge boundaries) than the baseline.

from �180 to +180 degrees at steps of 20 degrees, and encode the transformation as a 19-D
one-hot vector.

At each training iteration, we randomly sample a batch of < Is, It, T > tuples from the
training split for the single-view setting, and < Is1 , Is2 , It, T1, T2 > tuples for the multi-view
setting, where Ti denotes the relative viewpoint transformation between Isi and It, and Ti is
randomly sampled from the set of valid transformations. For each category, we construct a
test set of 20, 000 tuples by following the same sampling procedure above, except that the
shapes are now sampled from the test split.
Appearance flows versus direct pixel generation Our first experiment compares the
view synthesis performance of our appearance flow approach with the direct pixel generation
method by [188] under the single input view setting.

Figure 4.3 compares the view synthesis results using di↵erent methods on examples from
the test set of two categories (car and chair). Overall, our prediction tends to be much
sharper and matches the ground-truth better than the baseline. In particular, our synthesized
views using appearance flows are able to maintain detailed textures and edge boundaries
that are lost in direct pixel generation despite both networks are trained with the same loss
function.

For quantitative evaluation we measure the mean pixel L1 error between the predicted
views and the ground-truth on the foreground regions. As shown in Table ??, our method
outperforms the baseline in both categories (car and chair). We further analyze the error
statistics by computing the pairwise cross-view confusion matrix for both methods, which

CHAPTER 4. VIEW SYNTHESIS BY APPEARANCE FLOW 42

Input Method Car Chair

Single-view
Tatarchenko et al. [188] 0.404 0.345

Ours 0.368 0.323

Multi-view
Tatarchenko et al. [188] 0.385 0.334

Ours 0.285 0.248

Table 4.1: Mean pixel L1 error between the ground-truth and predictions by di↵erent meth-
ods. Lower is better.

Input Ground-truth Prediction

Our single-view failure modes

Figure 4.4: Visualization of error statistics for generating novel views from a single input
view on the car category. The heatmaps (blue–low, red–high) depict the mean pixel error
for obtaining the target view (columns) from the input view (rows) for the baseline [188]
(left) and our approach(middle). Some common failure modes of our method are visualized
on the right.

measures how predictive/informative a given view is for synthesizing another view (see the
visualization in Figure 4.4). The error statistics suggest that our method is especially strong
in synthesizing views that share significant number of common pixels with the input view
(within ±45 degrees azimuth variation from the input view – the diagonals in the plot) or
along the corresponding symmetry planes (o↵-diagonals) that typically exhibit high appear-
ance correlation with the input view (e.g. synthesizing the right view from the left view of
a car), and slightly weaker than direct pixel generation in views that do not share much in
common (e.g. from frontal to the side or rear views).

Interestingly though, when we conduct perceptual studies comparing the visual similarity
between predicted views and the ground-truth, our method is far ahead of the baseline across
the entire spectrum of the cross-view predictions. More specifically, we randomly sampled
1, 000 test tuples, and asked users on Amazon Mechanical Turk to select the prediction that
looks more similar to the ground-truth. We average the responses over 5 unique turkers for
each test tuple, and find that 95% of the time our prediction is chosen over the baseline for
cars and 93% for chairs, suggesting that the L1 metric might not fully reflect the strength

CHAPTER 4. VIEW SYNTHESIS BY APPEARANCE FLOW 43

Figure 4.5: Sample appearance flow vectors predicted by our method. For randomly sampled
points in the generated target image (left), the lines depict the corresponding appearance
flow to the source image (right).

of our method.
One additional benefit of predicting appearance flows is that it allows intuitive visual-

ization and understanding of exactly how the synthesized view is constructed. For instance,
Figure 4.5 shows sample appearance flow vectors predicted by our method. It is interesting to
note that the appearance flows do not necessarily correspond to anatomically/symmetrically
corresponding parts. For example, while the top-right pixels of the first car in Figure 4.5
transfer appearance from their corresponding location in the source image, the pixels in the
back wheel are generated using the front wheel of the source image.
Multi-view versus single-view In this experiment, we evaluate the synthesis perfor-
mance of using multiple input views (two in this case). It turns out that having multiple
input views is much more beneficial for our approach than for the baseline, as our synthesis
error drops significantly compared to the single-view setting while less so for the baseline
(see Table 4.1). This indicates that predicting appearance flows allows more e↵ective uti-
lization of di↵erent prediction hypotheses. Figure 4.6 shows sample visualization of how our
multi-view synthesis network automatically combines high-quality predictions from individ-
ual input views to construct the final prediction.
Results on PASCAL VOC [42] images Although our synthesis network is trained on
rendered synthetic images, it also exhibits potentials in generalizing to real images. In order
to use our learnt models for synthesizing views for objects in PASCAL VOC, we require some
pre-processing to ensure input statistics similar to the rendered training set. We therefore
re-scale the input image to have similar number of foreground pixels as objects in the training
set with the same aspect ratio. We visualize and compare a few example synthesis results
on segmented PASCAL VOC images in Figure 4.7.

4.5 Discussion

We have presented a framework that re-parametrizes image synthesis as predicting the
appearance flow field between the input image(s) and the output, and demonstrated its
successful application to novel view synthesis. However, our method is by no means close
to solving the problem in the general case. A number of major challenges are yet to be
addressed:

• Our current method is incapable of hallucinating pixel values not present in the input

CHAPTER 4. VIEW SYNTHESIS BY APPEARANCE FLOW 44

Single-view
prediction Input views

Selection
mask

Final
prediction

Ground-truth
view

Figure 4.6: View synthesis examples using our multi-view network. Each input view makes
independent prediction of a candidate target view as well as a selection/confidence mask
(blue–low, red–high). The final prediction is obtained by linearly combining the single-
view predictions with weights normalized across the selection masks. Typically, the final
prediction is more similar to the ground-truth than any independent prediction.

view. While this is not as bad is it sounds (since the color palette of a typical image
is quite rich), it would be beneficial to develop a mechanism that combines the hallu-
cination capability of pixel generation CNN and the detail-preserving property of our
flow-based synthesis.

• Empirically we observe that our network sometimes struggles in learning long-range
appearance correlations, since the gradients derived from the flows are quite local. We
conducted preliminary experiments with multi-scale reconstruction loss, and found it
to alleviate the gradient locality to some extent.

• While the academic community around view synthesis is growing rapidly, we are still
missing large-scale datasets of diverse real-world objects/scenes and a proper metric

CHAPTER 4. VIEW SYNTHESIS BY APPEARANCE FLOW 45

Input view Views synthesized by [1] Our synthesis

Figure 4.7: View synthesis results for segmented objects in the PASCAL VOC dataset. Our
method generalizes better and yields more realistic results than the baseline [188].

(L1 pixel error is certainly not ideal) for measuring research progress.

• All the existing learning-based view synthesis approaches assume knowing the category
of the object. An interesting direction is to develop a method that is category-agnostic,
and once learned, can be applied to any real-world image.

Finally, we believe that our technique of leveraging appearance flows is also applicable
to tasks beyond novel view synthesis, including image inpainting, video frame prediction,
modeling e↵ect of actions, super-resolution, etc. Furthermore, notice that the explicit pixel
associations provided by appearance flows naturally emerge without the need of any ground-
truth labels. In the next two chapters, we show how to utilize this observation to learn scene
geometry without labeled data.

46

Chapter 5

Learning Depth and Ego-Motion via

View Synthesis

Figure 5.1: An example image from the KITTI dataset [57].

Humans are capable of perceiving rich 3D structure from a single 2D image. For instance,
given the image in Figure 5.1, we could easily infer that the biker is closer to the camera
than the minivan, and the minivan is closer than the tree in the background. We can also
tell that the road is flat, and faces up towards the sky. We can even tell that the minivan
has a cuboidal shape without looking at its hidden surfaces. This is remarkable because
single-image 3D is an ambiguous task by itself. A 2D image could be the projection of an
infinite number of di↵erent 3D entities. Therefore, we must rely on learning from our past
visual experience to resolve the ambiguity.

This chapter presents a framework for learning monocular depth and camera motion
estimation from unlabeled video sequences. By “unlabeled” we mean no ground-truth depth
or pose labels are available for training. We formulate the learning objective around the
observation that if both the depth and camera motion are predicted correctly, they should

CHAPTER 5. LEARNING DEPTH AND EGO-MOTION VIA VIEW SYNTHESIS 47

consistently explain the nearby frames through the task of novel view synthesis1.

5.1 Introduction

Humans are remarkably capable of inferring ego-motion and the 3D structure of a scene
even over short timescales. For instance, in navigating along a street, we can easily locate
obstacles and react quickly to avoid them. Years of research in geometric computer vision
has failed to recreate similar modeling capabilities for real-world scenes (e.g., where non-
rigidity, occlusion and lack of texture are present). So why do humans excel at this task?
One hypothesis is that we develop a rich, structural understanding of the world through
our past visual experience that has largely consisted of moving around and observing vast
numbers of scenes and developing consistent modeling of our observations. From millions
of such observations, we have learned about the regularities of the world—roads are flat,
buildings are straight, cars are supported by roads etc., and we can apply this knowledge
when perceiving a new scene, even from a single monocular image.

In this chapter, we mimic this approach by training a model that observes sequences
of images and aims to explain its observations by predicting likely camera motion and the
scene structure (as shown in Fig. 5.2). We take an end-to-end approach in allowing the
model to map directly from input pixels to an estimate of ego-motion (parameterized as
6-DoF transformation matrices) and the underlying scene structure (parameterized as per-
pixel depth maps under a reference view). We are particularly inspired by prior work that
has suggested view synthesis as a metric [185] and recent work that tackles the calibrated,
multi-view 3D case in an end-to-end framework [47]. Our model is not supervised by ground-
truth depth or camera motion, and can be trained simply using sequences of images with no
manual labeling or even camera motion information.

Our approach builds upon the insight that a geometric view synthesis system only per-
forms consistently well when its intermediate predictions of the scene geometry and the
camera poses correspond to the physical ground-truth. While imperfect geometry and/or
pose estimation can cheat with reasonable synthesized views for certain types of scenes (e.g.,
textureless), the same model would fail miserably when presented with another set of scenes
with more diverse layout and appearance structures. Thus, our goal is to formulate the entire
view synthesis pipeline as the inference procedure of a convolutional neural network, so that
by training the network on large-scale video data for the ‘meta’-task of view synthesis the
network is forced to learn about intermediate tasks of depth and camera pose estimation in
order to come up with a consistent explanation of the visual world.

1This work was originally published as Unsupervised learning of depth and ego-motion from video. In
CVPR, 2017 [234].

CHAPTER 5. LEARNING DEPTH AND EGO-MOTION VIA VIEW SYNTHESIS 48

...

Target view

Nearby views

Depth CNN

Pose CNN

R, t

(a) Training: unlabeled video clips.

(b) Testing: single-view depth and multi-view pose estimation.

Figure 5.2: The training data to our system consists solely of unlabeled image sequences
capturing scene appearance from di↵erent viewpoints, where the poses of the images are not
provided. Our training procedure produces two models that operate independently, one for
single-view depth prediction, and one for multi-view camera pose estimation.

5.2 Background

Structure from motion The simultaneous estimation of structure and motion is a well
studied problem with an established toolchain of techniques [53, 210, 152]. Whilst the
traditional toolchain is e↵ective and e�cient in many cases, its reliance on accurate image
correspondence can cause problems in areas of low texture, complex geometry/photometry,
thin structures, and occlusions. To address these issues, several of the pipeline stages have
been recently tackled using deep learning, e.g., feature matching [69], pose estimation [107],
and stereo [47, 108, 224]. These learning-based techniques are attractive in that they are
able to leverage external supervision during training, and potentially overcome the above
issues when applied to test data.

Warping-based view synthesis One important application of geometric scene under-
standing is the task of novel view synthesis, where the goal is to synthesize the appearance
of the scene seen from novel camera viewpoints. A classic paradigm for view synthesis is
to first either estimate the underlying 3D geometry explicitly or establish pixel correspon-
dence among input views, and then synthesize the novel views by compositing image patches
from the input views (e.g., [22, 239, 175, 32, 46]). Recently, end-to-end learning has been

CHAPTER 5. LEARNING DEPTH AND EGO-MOTION VIA VIEW SYNTHESIS 49

applied to reconstruct novel views by transforming the input based on depth or flow, e.g.,
DeepStereo [47], Deep3D [213] and Appearance Flows [235]. In these methods, the underly-
ing geometry is represented by quantized depth planes (DeepStereo), probabilistic disparity
maps (Deep3D) and view-dependent flow fields (Appearance Flows), respectively. Unlike
methods that directly map from input views to the target view (e.g., [187]), warping-based
methods are forced to learn intermediate predictions of geometry and/or correspondence.
In this work, we aim to distill such geometric reasoning capability from CNNs trained to
perform warping-based view synthesis.

Learning single-view 3D from registered 2D views Our work is closely related to a
line of recent research on learning single-view 3D inference from registered 2D observations.
Garg et al. [55] propose to learn a single-view depth estimation CNN using projection errors
to a calibrated stereo twin for supervision. Concurrently, Deep3D [213] predicts a second
stereo viewpoint from an input image using stereoscopic film footage as training data. A
similar approach was taken by Godard et al. [59], with the addition of a left-right consistency
constraint, and a better architecture design that led to impressive performance. Like our
approach, these techniques only learn from image observations of the world, unlike methods
that require explicit depth for training, e.g., [80, 173, 40, 108, 118].

These techniques bear some resemblance to direct methods for structure and motion
estimation [90], where the camera parameters and scene depth are adjusted to minimize a
pixel-based error function. However, rather than directly minimizing the error to obtain
the estimation, the CNN-based methods only take a gradient step for each batch of input
instances, which allows the network to learn an implicit prior from a large corpus of related
imagery. Several authors have explored building di↵erentiable rendering operations into their
models that are trained in this way, e.g., [70, 117, 137].

While most of the above techniques (including ours) are mainly focused on inferring depth
maps as the scene geometry output, recent work (e.g., [54, 166, 191, 215]) has also shown
success in learning 3D volumetric representations from 2D observations based on similar
principles of projective geometry. Fouhey et al. [50] further show that it is even possible to
learn 3D inference without 3D labels (or registered 2D views) by utilizing scene regularity.

Unsupervised/Self-supervised learning from video Another line of related work to
ours is visual representation learning from video, where the general goal is to design pretext
tasks for learning generic visual features from video data that can later be re-purposed for
other vision tasks such as object detection and semantic segmentation. Such pretext tasks
include ego-motion estimation [4, 95], tracking [202], temporal coherence [63], temporal order
verification [148], and object motion mask prediction [155]. While we focus on inferring the
explicit scene geometry and ego-motion in this work, intuitively, the internal representation
learned by the deep network (especially the single-view depth CNN) should capture some
level of semantics that could generalize to other tasks as well.

CHAPTER 5. LEARNING DEPTH AND EGO-MOTION VIA VIEW SYNTHESIS 50

T̂t�t+1

T̂t�t�1

It

It�1

It+1

D̂t(p)
p

pt+1

pt�1
Project

Project

Pose CNN

Depth CNN

Figure 5.3: Overview of the supervision pipeline based on view synthesis. The depth network
takes only the target view as input, and outputs a per-pixel depth map D̂t. The pose network
takes both the target view (It) and the nearby/source views (e.g., It�1 and It+1) as input, and
outputs the relative camera poses (T̂t!t�1, T̂t!t+1). The outputs of both networks are then
used to inverse warp the source views (see Sec. 5.3.2) to reconstruct the target view, and the
photometric reconstruction loss is used for training the CNNs. By utilizing view synthesis
as supervision, we are able to train the entire framework in an unsupervised manner from
videos.

Concurrent to our work, Vijayanarasimhan et al. [197] independently propose a frame-
work for joint training of depth, camera motion and scene motion from videos. While both
methods are conceptually similar, ours is focused on the unsupervised aspect, whereas their
framework adds the capability to incorporate supervision (e.g., depth, camera motion or
scene motion). There are significant di↵erences in how scene dynamics are modeled during
training, in which they explicitly solve for object motion whereas our explainability mask
discounts regions undergoing motion, occlusion and other factors.

5.3 Approach

Here we describe a framework for jointly training a single-view depth CNN and a camera
pose estimation CNN from unlabeled video sequences. Despite being jointly trained, the
depth model and the pose estimation model can be used independently during test-time
inference. Training examples to our model consist of short image sequences of scenes captured
by a moving camera. While our training procedure is robust to some degree of scene motion,
we assume that the scenes we are interested in are mostly rigid, i.e., the scene appearance
change across di↵erent frames is dominated by the camera motion.

CHAPTER 5. LEARNING DEPTH AND EGO-MOTION VIA VIEW SYNTHESIS 51

It Is

pt

ptls ptrs

pbrspbls
ps

Îs

pt

Project Warp

Figure 5.4: Illustration of the di↵erentiable image warping process. For each point pt in
the target view, we first project it onto the source view based on the predicted depth and
camera pose, and then use bilinear interpolation to obtain the value of the warped image Îs
at location pt.

5.3.1 View synthesis as supervision

The key supervision signal for our depth and pose prediction CNNs comes from the task
of novel view synthesis : given one input view of a scene, synthesize a new image of the scene
seen from a di↵erent camera pose. We can synthesize a target view given a per-pixel depth in
that image, plus the pose and visibility in a nearby view. As we will show next, this synthesis
process can be implemented in a fully di↵erentiable manner with CNNs as the geometry and
pose estimation modules. Visibility can be handled, along with non-rigidity and other non-
modeled factors, using an “explanability” mask, which we discuss later (Sec. 5.3.3).

Let us denote < I1, . . . , IN > as a training image sequence with one of the frames It

being the target view and the rest being the source views Is(1  s  N, s 6= t). The view
synthesis objective can be formulated as

Lvs =
X

s

X

p

|It(p)� Îs(p)| , (5.1)

where p indexes over pixel coordinates, and Îs is the source view Is warped to the target co-
ordinate frame based on a depth image-based rendering module [44] (described in Sec. 5.3.2),
taking the predicted depth D̂t, the predicted 4⇥ 4 camera transformation matrix2 T̂t!s and
the source view Is as input.

Note that the idea of view synthesis as supervision has also been recently explored for
learning single-view depth estimation [55, 59] and multi-view stereo [47]. However, to the
best of our knowledge, all previous work requires posed image sets during training (and
testing too in the case of DeepStereo), while our framework can be applied to standard
videos without pose information. Furthermore, it predicts the poses as part of the learning
framework. See Figure 5.3 for an illustration of our learning pipeline for depth and pose
estimation.

2In practice, the CNN estimates the Euler angles and the 3D translation vector, which are then converted
to the transformation matrix.

CHAPTER 5. LEARNING DEPTH AND EGO-MOTION VIA VIEW SYNTHESIS 52

5.3.2 Di↵erentiable depth image-based rendering

As indicated in Eq. 5.1, a key component of our learning framework is a di↵erentiable
depth image-based renderer that reconstructs the target view It by sampling pixels from a
source view Is based on the predicted depth map D̂t and the relative pose T̂t!s.

Let pt denote the homogeneous coordinates of a pixel in the target view, and K denote
the camera intrinsics matrix. We can obtain pt’s projected coordinates onto the source view
ps by3

ps ⇠ KT̂t!sD̂t(pt)K
�1
pt (5.2)

Notice that the projected coordinates ps are continuous values. To obtain Is(ps) for popu-
lating the value of Îs(pt) (see Figure 5.4), we then use the di↵erentiable bilinear sampling
mechanism proposed in the spatial transformer networks [92] that linearly interpolates the
values of the 4-pixel neighbors (top-left, top-right, bottom-left, and bottom-right) of ps to
approximate Is(ps), i.e. Îs(pt) = Is(ps) =

P
i2{t,b},j2{l,r} w

ij
Is(pijs), where w

ij is linearly pro-

portional to the spatial proximity between ps and p
ij
s , and

P
i,j w

ij = 1. A similar strategy is
used in [235] for learning to directly warp between di↵erent views, while here the coordinates
for pixel warping are obtained through projective geometry that enables the factorization of
depth and camera pose.

5.3.3 Modeling the model limitation

Note that when applied to monocular videos the above view synthesis formulation implic-
itly assumes 1) the scene is static without moving objects; 2) there is no occlusion/disocclusion
between the target view and the source views; 3) the surface is Lambertian so that the
photo-consistency error is meaningful. If any of these assumptions are violated in a training
sequence, the gradients could be corrupted and potentially inhibit training. To improve the
robustness of our learning pipeline to these factors, we additionally train a explainability
prediction network (jointly and simultaneously with the depth and pose networks) that out-
puts a per-pixel soft mask Ês for each target-source pair, indicating the network’s belief in
where direct view synthesis will be successfully modeled for each target pixel. Based on the
predicted Ês, the view synthesis objective is weighted correspondingly by

Lvs =
X

<I1,...,IN>2S

X

p

Ês(p)|It(p)� Îs(p)| . (5.3)

Since we do not have direct supervision for Ês, training with the above loss would result in
a trivial solution of the network always predicting Ês to be zero, which perfectly minimizes
the loss. To resolve this, we add a regularization term Lreg(Ês) that encourages nonzero
predictions by minimizing the cross-entropy loss with constant label 1 at each pixel location.
In other words, the network is encouraged to minimize the view synthesis objective, but
allowed a certain amount of slack for discounting the factors not considered by the model.

3For notation simplicity, we omit showing the necessary conversion to homogeneous coordinates along
the steps of matrix multiplication.

CHAPTER 5. LEARNING DEPTH AND EGO-MOTION VIA VIEW SYNTHESIS 53

5.3.4 Overcoming the gradient locality

One remaining issue with the above learning pipeline is that the gradients are mainly
derived from the pixel intensity di↵erence between I(pt) and the four neighbors of I(ps),
which would inhibit training if the correct ps (projected using the ground-truth depth and
pose) is located in a low-texture region or far from the current estimation. This is a well
known issue in motion estimation [11]. Empirically, we found two strategies to be e↵ective
for overcoming this issue: 1) using a convolutional encoder-decoder architecture with a small
bottleneck for the depth network that implicitly constrains the output to be globally smooth
and facilitates gradients to propagate from meaningful regions to nearby regions; 2) explicit
multi-scale and smoothness loss (e.g., as in [55, 59]) that allows gradients to be derived
from larger spatial regions directly. We adopt the second strategy in this work as it is
less sensitive to architectural choices. For smoothness, we minimize the L1 norm of the
second-order gradients for the predicted depth maps (similar to [197]).

Our final objective becomes

Lfinal =
X

l

L
l
vs + �sL

l
smooth + �e

X

s

Lreg(Ê
l
s) , (5.4)

where l indexes over di↵erent image scales, s indexes over source images, and �s and �e are the
weighting for the depth smoothness loss and the explainability regularization, respectively.

5.3.5 Network architecture

Single-view depth For single-view depth prediction, we adopt the DispNet architecture
proposed in [146] that is mainly based on an encoder-decoder design with skip connections
and multi-scale side predictions (see Figure 5.5). All conv layers are followed by ReLU
activation except for the prediction layers, where we use 1/(↵ ⇤ sigmoid(x)+�) with ↵ = 10
and � = 0.1 to constrain the predicted depth to be always positive within a reasonable range.
We also experimented with using multiple views as input to the depth network, but did not
find this to improve the results. This is in line with the observations in [194], where optical
flow constraints need to be enforced to utilize multiple views e↵ectively.

Pose The input to the pose estimation network is the target view concatenated with all
the source views (along the color channels), and the outputs are the relative poses between
the target view and each of the source views. The network consists of 7 stride-2 convolutions
followed by a 1⇥ 1 convolution with 6 ⇤ (N � 1) output channels (corresponding to 3 Euler
angles and 3-D translation for each source view). Finally, global average pooling is applied
to aggregate predictions at all spatial locations. All conv layers are followed by ReLU except
for the last layer where no nonlinear activation is applied.

Explainability mask The explainability prediction network shares the first five feature
encoding layers with the pose network, followed by 5 deconvolution layers with multi-scale

CHAPTER 5. LEARNING DEPTH AND EGO-MOTION VIA VIEW SYNTHESIS 54

. . .

Input

Deconv
Concat
Upsample +2Concat
Prediction

Conv

(a) Single-view depth network (b) Pose/explainability network

Figure 5.5: Network architecture for our depth/pose/explainability prediction modules. The
width and height of each rectangular block indicates the output channels and the spatial
dimension of the feature map at the corresponding layer respectively, and each reduc-
tion/increase in size indicates a change by the factor of 2. (a) For single-view depth, we
adopt the DispNet [146] architecture with multi-scale side predictions. The kernel size is 3
for all the layers except for the first 4 conv layers with 7, 7, 5, 5, respectively. The number of
output channels for the first conv layer is 32. (b) The pose and explainabilty networks share
the first few conv layers, and then branch out to predict 6-DoF relative pose and multi-scale
explainability masks, respectively. The number of output channels for the first conv layer
is 16, and the kernel size is 3 for all the layers except for the first two conv and the last
two deconv/prediction layers where we use 7, 5, 5, 7, respectively. See Section 5.3.5 for more
details.

side predictions. All conv/deconv layers are followed by ReLU except for the prediction
layers with no nonlinear activation. The number of output channels for each prediction layer
is 2 ⇤ (N � 1), with every two channels normalized by softmax to obtain the explainability
prediction for the corresponding source-target pair (the second channel after normalization
is Ês and used in computing the loss in Eq. 5.3).

5.4 Experiments

Here we evaluate the performance of our system, and compare with prior approaches on
single-view depth as well as ego-motion estimation. We mainly use the KITTI dataset [57]
for benchmarking, but also use the Make3D dataset [173] for evaluating cross-dataset gen-
eralization ability.

CHAPTER 5. LEARNING DEPTH AND EGO-MOTION VIA VIEW SYNTHESIS 55

Training Details We implemented the system using the publicly available TensorFlow [1]
framework. For all the experiments, we set �s = 0.5/l (l is the downscaling factor for the
corresponding scale) and �e = 0.2. During training, we used batch normalization [89] for all
the layers except for the output layers, and the Adam [114] optimizer with �1 = 0.9, �2 =
0.999, learning rate of 0.0002 and mini-batch size of 4. The training typically converges after
about 150K iterations. All the experiments are performed with image sequences captured
with a monocular camera. We resize the images to 128⇥ 416 during training, but both the
depth and pose networks can be run fully-convolutionally for images of arbitrary size at test
time.

Input image Our prediction

Figure 5.6: Our sample predictions on the Cityscapes dataset using the model trained on
Cityscapes only.

5.4.1 Single-view depth estimation

We train our system on the split provided by [40], and exclude all the frames from the
testing scenes as well as static sequences with mean optical flow magnitude less than 1 pixel
for training. We fix the length of image sequences to be 3 frames, and treat the central
frame as the target view and the ±1 frames as the source views. We use images captured by
both color cameras, but treated them independently when forming training sequences. This
results in a total of 44, 540 sequences, out of which we use 40, 109 for training and 4, 431 for
validation.

CHAPTER 5. LEARNING DEPTH AND EGO-MOTION VIA VIEW SYNTHESIS 56

Eigen et al. (depth sup.) Garg et al. (pose sup.) Ours (unsupervised)Ground-truthInput

Figure 5.7: Comparison of single-view depth estimation between Eigen et al. [40] (with
ground-truth depth supervision), Garg et al. [55] (with ground-truth pose supervision), and
ours (unsupervised). The ground-truth depth map is interpolated from sparse measurements
for visualization purpose. The last two rows show typical failure cases of our model, which
sometimes struggles in vast open scenes and objects close to the front of the camera.

To the best of our knowledge, no previous systems exist that learn single-view depth
estimation in an unsupervised manner from monocular videos. Nonetheless, here we provide
comparison with prior methods with depth supervision [40] and recent methods that use
calibrated stereo images (i.e. with pose supervision) for training [55, 59]. Since the depth
predicted by our method is defined up to a scale factor, for evaluation we multiply the
predicted depth maps by a scalar ŝ that matches the median with the ground-truth, i.e.
ŝ = median(Dgt)/median(Dpred).

Similar to [59], we also experimented with first pre-training the system on the larger

CHAPTER 5. LEARNING DEPTH AND EGO-MOTION VIA VIEW SYNTHESIS 57

Input image Ours (CS + KITTI)Ours (CS)

Figure 5.8: Comparison of single-view depth predictions on the KITTI dataset by our initial
Cityscapes model and the final model (pre-trained on Cityscapes and then fine-tuned on
KITTI). The Cityscapes model sometimes makes structural mistakes (e.g. holes on car
body) likely due to the domain gap between the two datasets.

Cityscapes dataset [29] (sample predictions are shown in Figure 5.6), and then fine-tune on
KITTI, which results in slight performance improvement.

Method Dataset Supervision Error metric Accuracy metric

Depth Pose Abs Rel Sq Rel RMSE RMSE log � < 1.25 � < 1.252 � < 1.253

Train set mean K X 0.403 5.530 8.709 0.403 0.593 0.776 0.878
Eigen et al. [40] Coarse K X 0.214 1.605 6.563 0.292 0.673 0.884 0.957
Eigen et al. [40] Fine K X 0.203 1.548 6.307 0.282 0.702 0.890 0.958
Liu et al. [130] K X 0.202 1.614 6.523 0.275 0.678 0.895 0.965
Godard et al. [59] K X 0.148 1.344 5.927 0.247 0.803 0.922 0.964
Godard et al. [59] CS + K X 0.124 1.076 5.311 0.219 0.847 0.942 0.973
Ours (w/o explainability) K 0.221 2.226 7.527 0.294 0.676 0.885 0.954
Ours K 0.208 1.768 6.856 0.283 0.678 0.885 0.957
Ours CS 0.267 2.686 7.580 0.334 0.577 0.840 0.937
Ours CS + K 0.198 1.836 6.565 0.275 0.718 0.901 0.960

Garg et al. [garg] cap 50m K X 0.169 1.080 5.104 0.273 0.740 0.904 0.962
Ours (w/o explainability) cap 50m K 0.208 1.551 5.452 0.273 0.695 0.900 0.964
Ours cap 50m K 0.201 1.391 5.181 0.264 0.696 0.900 0.966
Ours cap 50m CS 0.260 2.232 6.148 0.321 0.590 0.852 0.945
Ours cap 50m CS + K 0.190 1.436 4.975 0.258 0.735 0.915 0.968

Table 5.1: Single-view depth results on the KITTI dataset [57] using the split of Eigen et
al. [40] (Baseline numbers taken from [59]). For training, K = KITTI, and CS = Cityscapes
[29]. All methods we compare with use some form of supervision (either ground-truth depth
or calibrated camera pose) during training. Note: results from Garg et al. [55] are capped
at 50m depth, so we break these out separately in the lower part of the table.

KITTI Here we evaluate the single-view depth performance on the 697 images from the
test split of [40]. As shown in Table 5.1, our unsupervised method performs comparably
with several supervised methods (e.g. Eigen et al. [40] and Garg et al. [55]), but falls short

CHAPTER 5. LEARNING DEPTH AND EGO-MOTION VIA VIEW SYNTHESIS 58

of concurrent work by Godard et al. [59] that uses calibrated stereo images (i.e. with pose
supervision) with left-right cycle consistency loss for training. For future work, it would be
interesting to see if incorporating the similar cycle consistency loss into our framework could
further improve the results. Figure 5.7 provides examples of visual comparison between our
results and some supervised baselines over a variety of examples. One can see that although
trained in an unsupervised manner, our results are comparable to that of the supervised
baselines, and sometimes preserve the depth boundaries and thin structures such as trees
and street lights better.

We show sample predictions made by our initial Cityscapes model and the final model
(pre-trained on Cityscapes and then fine-tuned on KITTI) in Figure 5.8. Due to the domain
gap between the two datasets, our Cityscapes model sometimes has di�culty in recovering
the complete shape of the car/bushes, and mistakes them with distant objects.

We also performed an ablation study of the explainability modeling (see Table 5.1), which
turns out only o↵ering a modest performance boost. This is likely because 1) most of the
KITTI scenes are static without significant scene motions, and 2) the occlusion/visibility
e↵ects only occur in small regions in sequences across a short time span (3-frames), which
make the explainability modeling less essential to the success of training. Nonetheless, our
explainability prediction network does seem to capture the factors like scene motion and
visibility well (see Sec. 5.4.3), and could potentially be more important for other more chal-
lenging datasets.

Make3D To evaluate the generalization ability of our single-view depth model, we directly
apply our model trained on Cityscapes + KITTI to the Make3D dataset unseen during
training. While there still remains a significant performance gap between our method and
others supervised using Make3D ground-truth depth (see Table 5.2), our predictions are
able to capture the global scene layout reasonably well without any training on the Make3D
images (see Figure 5.9).

Method Supervision Error metric

Depth Pose Abs Rel Sq Rel RMSE RMSE log

Train set mean X 0.876 13.98 12.27 0.307
Karsch et al. [102] X 0.428 5.079 8.389 0.149
Liu et al. [131] X 0.475 6.562 10.05 0.165
Laina et al. [120] X 0.204 1.840 5.683 0.084
Godard et al. [59] X 0.544 10.94 11.76 0.193

Ours 0.383 5.321 10.47 0.478

Table 5.2: Results on the Make3D dataset [173]. Similar to ours, Godard et al. [59] do not
utilize any of the Make3D data during training, and directly apply the model trained on
KITTI+Cityscapes to the test set. Following the evaluation protocol of [59], the errors are
only computed where depth is less than 70 meters in a central image crop.

CHAPTER 5. LEARNING DEPTH AND EGO-MOTION VIA VIEW SYNTHESIS 59

Input Ground-truth Ours

Figure 5.9: Our sample predictions on the Make3D dataset. Note that our model is trained
on KITTI + Cityscapes only, and directly tested on Make3D.

5.4.2 Pose estimation

To evaluate the performance of our pose estimation network, we applied our system to the
o�cial KITTI odometry split (containing 11 driving sequences with ground truth odometry
obtained through the IMU/GPS readings, which we use for evaluation purpose only), and
used sequences 00-08 for training and 09-10 for testing. In this experiment, we fix the length
of input image sequences to our system to 5 frames. We compare our ego-motion estimation
with two variants of monocular ORB-SLAM [150] (a well-established SLAM system): 1)
ORB-SLAM (full), which recovers odometry using all frames of the driving sequence (i.e.
allowing loop closure and re-localization), and 2) ORB-SLAM (short), which runs on 5-frame
snippets (same as our input setting). Another baseline we compare with is the dataset
mean of car motion (using ground-truth odometry) for 5-frame snippets. To resolve scale
ambiguity during evaluation, we first optimize the scaling factor for the predictions made by
each method to best align with the ground truth, and then measure the Absolute Trajectory
Error (ATE) [150] as the metric. ATE is computed on 5-frame snippets and averaged over the
full sequence.4 As shown in Table 5.3 and Fig. 5.10, our method outperforms both baselines
(mean odometry and ORB-SLAM (short)) that share the same input setting as ours, but
falls short of ORB-SLAM (full), which leverages whole sequences (1591 for seq. 09 and 1201
for seq. 10) for loop closure and re-localization.

For better understanding of our pose estimation results, we show in Figure 5.10 the ATE
curve with varying amount of side-rotation by the car between the beginning and the end

4For evaluating ORB-SLAM (full) we break down the trajectory of the full sequence into 5-frame snippets
with the reference coordinate frame adjusted to the central frame of each snippet.

CHAPTER 5. LEARNING DEPTH AND EGO-MOTION VIA VIEW SYNTHESIS 60

of a sequence. Figure 5.10 suggests that our method is significantly better than ORB-SLAM

(short) when the side-rotation is small (i.e. car mostly driving forward), and comparable
to ORB-SLAM (full) across the entire spectrum. The large performance gap between ours
and ORB-SLAM (short) suggests that our learned ego-motion could potentially be used as
an alternative to the local estimation modules in monocular SLAM systems.

Method Seq. 09 Seq. 10

ORB-SLAM (full) 0.014± 0.008 0.012± 0.011

ORB-SLAM (short) 0.064± 0.141 0.064± 0.130
Mean Odom. 0.032± 0.026 0.028± 0.023
Ours 0.021± 0.017 0.020± 0.015

Table 5.3: Absolute Trajectory Error (ATE) on the KITTI odometry split averaged over all
5-frame snippets (lower is better). Our method outperforms baselines with the same input
setting, but falls short of ORB-SLAM (full) that uses strictly more data.

0 0.1 0.2 0.3 0.4 0.5
Left/right turning magnitude (m)

0

0.02

0.04

0.06

0.08

0.1

A
bs

ol
ut

e
T

ra
ns

la
tio

n
E

rr
or

 (
m

)

Mean Odom.
ORB-SLAM (full)
ORB-SLAM (short)
Ours

Figure 5.10: Absolute Trajectory Error (ATE) at di↵erent left/right turning magnitude
(coordinate di↵erence in the side-direction between the start and ending frame of a testing
sequence). Our method performs significantly better than ORB-SLAM (short) when side
rotation is small, and is comparable with ORB-SLAM (full) across the entire spectrum.

5.4.3 Visualizing the explainability prediction

We visualize example explainability masks predicted by our network in Figure 5.11. The
first three rows suggest that the network has learned to identify dynamic objects in the
scene as unexplainable by our model, and similarly, rows 4–5 are examples of objects that
disappear from the frame in subsequent views. The last two rows demonstrate the potential
downside of explainability-weighted loss: the depth CNN has low confidence in predicting
thin structures well, and tends to mask them as unexplainable.

CHAPTER 5. LEARNING DEPTH AND EGO-MOTION VIA VIEW SYNTHESIS 61

Target view Explanability mask Source view

Figure 5.11: Sample visualizations of the explainability masks. Highlighted pixels are pre-
dicted to be unexplainable by the network due to motion (rows 1–3), occlusion/visibility
(rows 4–5), or other factors (rows 7–8).

5.5 Discussion

In this chapter, we have presented an end-to-end learning pipeline that utilizes the task of
view synthesis for supervision of single-view depth and camera pose estimation. The system
is trained on unlabeled videos, and yet performs comparably with approaches that require
ground-truth depth or pose for training. Despite good performance on the benchmark eval-
uation, our method is by no means close to solving the general problem of unsupervised
learning of 3D scene structure inference. A number of major challenges are yet to be ad-
dressed: 1) our current framework does not explicitly estimate scene dynamics and occlusions
(although they are implicitly taken into account by the explainability masks), both of which
are critical factors in 3D scene understanding. Direct modeling of scene dynamics through
motion segmentation (e.g. [197, 161]) could be a potential solution; 2) our framework as-
sumes the camera intrinsics are given, which forbids the use of random Internet videos with

CHAPTER 5. LEARNING DEPTH AND EGO-MOTION VIA VIEW SYNTHESIS 62

unknown camera types/calibration – we plan to address this in future work; 3) depth maps
are a simplified representation of the underlying 3D scene. It would be interesting to extend
our framework to learn full 3D volumetric representations (e.g., in the manner of [191]).

Another interesting area for future work would be to investigate in more detail the rep-
resentation learned by our system. In particular, the pose network likely uses some form
of image correspondence in estimating the camera motion, whereas the depth estimation
network likely recognizes common structural features of scenes and objects. It would be in-
teresting to probe these, and investigate the extent to which our network already performs, or
could be re-purposed to perform, tasks such as object detection and semantic segmentation.

63

Chapter 6

Learning Multiplane Images via View

Synthesis

YouTube
videos

TRAINING

Camera motion
clips

Multiplane Images
(MPIs)

STEREO MAGNIFICATION

~6.3cm

1.4cm

Figure 6.1: We extract camera motion clips from YouTube videos and use them to train a
neural network to generate the Multiplane Image (MPI) scene representation from narrow-
baseline stereo image pairs. The inferred MPI representation can then be used to synthesize
novel views of the scene, including ones that extrapolate significantly beyond the input
baseline. (Video stills in this and other figures in this chapter are used under Creative-
Commons license from YouTube user SonaVisual.)

In the previous chapter, we used depth maps as the geometric scene representation. This
chapter shifts focus to a di↵erent representation – multiplane images – that is capable of
capturing richer information about the scene in both geometry and appearance than depth
maps. A multiplane image (MPI) consists of a set of fronto-parallel planes at fixed depths
from a reference camera coordinate frame, where each plane encodes an RGB image and
an alpha map that capture the scene appearance at the corresponding depth. The MPI
representation can be used for e�cient and realistic rendering of novel views of the scene.

While MPI can be used as a general scene representation for view synthesis, this chap-
ter explores an intriguing scenario: extrapolating views from imagery captured by narrow-
baseline stereo cameras, including VR cameras and now-widespread dual-lens camera phones.

CHAPTER 6. LEARNING MULTIPLANE IMAGES VIA VIEW SYNTHESIS 64

We call this problem stereo magnification. We describe a framework (see Figure 6.1) that
uses a massive new data source for learning view extrapolation: online videos on YouTube.
Using data mined from such videos, we train a deep network that predicts an MPI from an
input stereo image pair. This inferred MPI can then be used to synthesize a range of novel
views of the scene, including views that extrapolate significantly beyond the input baseline.
We show that our method compares favorably with several recent view synthesis methods,
and demonstrate applications in magnifying narrow-baseline stereo images 1.

6.1 Introduction

Photography has undergone an upheaval over the past decade. Cellphone cameras have
steadily displaced point-and-shoot cameras, and have become competitive with digital SLRs
in certain scenarios. This change has been driven by the increasing image quality of cellphone
cameras, through better hardware and also through computational photography functionality
such as high dynamic range imaging [72] and synthetic defocus [5, 62]. Many of these recent
innovations have sought to replicate capabilities of traditional cameras. However, cell phones
are also rapidly acquiring new kinds of sensors, such as multiple lenses and depth sensors,
enabling applications beyond traditional photography.

In particular, dual-lens cameras are becoming increasingly common. While stereo cam-
eras have been around for nearly as long as photography itself, recently a number of dual-
camera phones, such as the iPhone 7, have appeared on the market. These cameras tend
to have a very small baseline (distance between views) on the order of a centimeter. We
have also seen the recent appearance of a number of “virtual-reality ready” cameras that
capture stereo images and video from a pair of cameras spaced approximately eye-distance
apart [61].

Motivated by the proliferation of stereo cameras, we explore the problem of synthesizing
new views from such narrow-baseline image pairs. While much prior work has explored
the problem of interpolating between a set of given views [22], we focus on the problem of
extrapolating views significantly beyond the two input images. Such view extrapolation has
many applications for photography. For instance, we might wish to take a narrow-baseline
(⇠1cm) stereo pair on a cell phone and extrapolate to an IPD-separated (⇠6.3cm) stereo
pair so as to create a photo with a compelling 3D stereo e↵ect. Or, we might wish to take an
IPD-separated stereo pair captured with a VR180 camera and extrapolate to an entire set of
views along a line say half a meter in length, so as to enable full parallax with a small range of
head motion. We call such view extrapolation from pairs of input views stereo magnification.
The examples above involve magnifying the baseline by a significant amount—up to about
8x the original baseline.

The stereo magnification problem is challenging. We have just two views as input, unlike
in common view interpolation scenarios that consider multiple views. We wish to be able to

1This work was originally published as Stereo Magnification: Learning view synthesis using multiplane
images. In SIGGRAPH, 2018 [233].

CHAPTER 6. LEARNING MULTIPLANE IMAGES VIA VIEW SYNTHESIS 65

handle challenging scenes with reflection and transparency. Finally, we need the capacity to
render pixels that are occluded and thus not visible in either input view. To address these
challenges, our approach is to learn to perform view extrapolation from large amounts of
visual data, following recent work on deep learning for view interpolation [47, 100]. However,
our approach di↵ers in key ways from prior work. First, we seek a scene representation that
can be predicted once from a pair of input views, then reused to predict many output
views, unlike in prior work where each output view must be predicted separately. Second,
we need a representation that can e↵ectively capture surfaces that are hidden in one or
both input views. We propose a layered representation called a Multiplane Image (MPI)
that has both of these properties. Finally, we need training data that matches our task.
Simply collecting stereo pairs is not su�cient, because for training we also require additional
views that are some distance from an input stereo pair as our ground truth. We propose
a simple, surprising source for such data—online video, e.g., from YouTube, and show that
large amounts of suitable data can be mined at scale for our task.

In experiments we compare our approach to recent view synthesis methods, and perform a
number of ablation studies. We show that our method achieves better numerical performance
on a held-out test set, and also produces more spatially stable output imagery since our
inferred scene representation is shared for synthesizing all target views. We also show that our
learned model generalizes to other datasets without re-training, and is e↵ective at magnifying
the narrow baseline of stereo imagery captured by cell phones and stereo cameras.

6.2 Background

Classical approaches to view synthesis View synthesis—i.e., taking one or more views
of a scene as input, and generating novel views—is a classic problem in computer graphics
that forms the core of many image-based rendering systems. Many approaches focus on the
interpolation setting, and operate by either interpolating rays from dense imagery (“light
field rendering”) [125, 64], or reconstructing scene geometry from sparse views [32, 239,
77]. While these methods yield high-quality novel views, they do so by compositing the
corresponding input pixels/rays, and typically only work well with multiple (> 2) input
views. View synthesis from stereo imagery has also been considered, including converting 3D
stereoscopic video to multi-view video suitable for glasses-free automultiscopic displays [168,
33, 19, 103] and 4D light field synthesis from a micro-baseline stereo pair [229], as well
as generalizations that reconstruct geometry from multiple small-baseline views [221, 67].
While we also focus on stereo imagery, the techniques we present can also be adapted to
single-view and multi-view settings. We also target much larger extrapolations than prior
work.

Learning-based view synthesis More recently, researchers have applied powerful deep
learning techniques to view synthesis. View synthesis can be naturally formulated as a
learning problem by capturing images of a large number of scenes, withholding some views

CHAPTER 6. LEARNING MULTIPLANE IMAGES VIA VIEW SYNTHESIS 66

of each scene as ground truth, training a model that predicts such missing views from one
or more given views, and comparing these predicted views to the ground truth as the loss or
objective that the learning seeks to optimize. Recent work has explored a number of deep
network architectures, scene representations, and application scenarios for learning view
synthesis.

Flynn et al. [47] proposed a view interpolation method called DeepStereo that predicts
a volumetric representation from a set of input images, and trains a model using images of
street scenes. Kalantari et al. [100] use light field photos captured by a Lytro camera [141] as
training data for predicting a color image for a target interpolated viewpoint. Both of these
methods predict a representation in the coordinate system of the target view. Therefore,
these methods must run the trained network for each desired target view, making real-
time rendering a challenge. Our method predicts the scene representation once, and reuses
it to render a range of output views in real time. Further, these prior methods focus on
interpolation, rather than extrapolation as we do.

Other recent work has explored the problem of synthesizing a stereo pair [213], large
camera motion [235], or even a light field [182] from a single image, an extreme form of
extrapolation. Our work focuses on the increasingly common scenario of narrow-baseline
stereo pairs. This two-view scenario potentially allows for generalization to more diverse
scenes and larger extrapolation than the single-view scenario. The recent single-view method
of Srinivasan et al., for instance, only considers relatively homogeneous datasets such as
macro shots of flowers, and extrapolates up to the small baseline of a Lytro camera, whereas
our method is able to operate on diverse sets of indoor and outdoor scenes, and extrapolate
views su�cient to allow slight head motions in a VR headset.

Finally, a variety of work in computer vision has used view synthesis as an indirect form
of supervision for other tasks, such as predicting depth, shape, or optical flow from one or
more images [55, 59, 234, 191, 197, 134]. However, view synthesis is not the explicit goal of
such work.

Scene representations for view synthesis A wide variety of scene representations have
been proposed for modeling scenes in view synthesis tasks. We are most interested in repre-
sentations that can be predicted once and then reused to render multiple views at runtime.
To achieve such a capability, representations are often volumetric or otherwise involve some
form of layering. For instance, layered depth images (LDIs) are a generalization of depth
maps that represent a scene using several layers of depth maps and associated color val-
ues [176]. Such layers allow a user to “see around” the foreground geometry to the occluded
objects that lie behind. Zitnick et al., represent scenes using per-input-image depth maps,
but also solve for alpha matted layers around depth discontinuities to achieve high-quality
interpolation [239]. Perhaps closest to our representation is that of Penner and Zhang [158].
They achieve softness by explicitly modeling confidence, whereas we model transparency
which leads to a di↵erent method of compositing and rendering. Additionally, whereas we
build one representation of a scene, they produce a representation for each input view and

CHAPTER 6. LEARNING MULTIPLANE IMAGES VIA VIEW SYNTHESIS 67

Layers at
fixed depths,
each is an
RGBA image.

Reference viewpoint Novel viewpoint

Figure 6.2: An illustration of the multiplane image (MPI) representation. An MPI consists
of a set of fronto-parallel planes at fixed depths from a reference camera coordinate frame,
where each plane encodes an RGB image and an alpha map that capture the scene appearance
at the corresponding depth. The MPI representation can be used for e�cient and realistic
rendering of novel views of the scene.

then interpolate between them. Our representation is also related to the classic layered rep-
resentation for encoding moving image sequences by Wang and Adelson [201], and to the
layered attenuators of Wetzstein, et al. [206], who use actual physical printed transparencies
to construct lightfield displays. Finally, Holroyd et al [82] explore a similar representation
to ours but in physical form.

The multiplane image (MPI) representation we use combines several attractive prop-
erties of prior methods, including handling of multiple layers and “softness” of layering for
representing mixed pixels around boundaries or reflective/transparent objects. Crucially, we
also found it to be suitable for learning via deep networks.

6.3 Approach

Given two images I1 and I2 with known camera parameters, our goal is to learn a deep
neural net to infer a global scene representation suitable for synthesizing novel views of the
same scene, and in particular extrapolating beyond the input views. In this section, we first
describe our scene representation and its characteristics, and then present our pipeline and
objective for learning to predict such representation. Note that while we focus on stereo
input in this work, our approach could be adapted to more general view synthesis setups
with either single or multiple input views.

CHAPTER 6. LEARNING MULTIPLANE IMAGES VIA VIEW SYNTHESIS 68

6.3.1 Multiplane image representation

The global scene representation we adopt is a set of fronto-parallel planes at a fixed
range of depths with respect to a reference coordinate frame, where each plane d encodes
an RGB color image Cd and an alpha/transparency map ↵d. Our representation, which
we call a Multiplane Image (MPI), can thus be described as a collection of such RGBA
layers {(C1,↵1), . . . , (CD,↵D)}, where D is the number of depth planes. An MPI is related
to the Layered Depth Image (LDI) representation of Shade, et al. [176], but in our case the
pixels in each layer are fixed at a certain depth, and we use an alpha channel per layer to
encode visibility. To render from an MPI , the layers are composed from back-to-front order
using the standard “over” alpha compositing operation. Figure 6.2 illustrates an MPI . The
MPI representation is also related to the “selection-plus-color” layers used in DeepStereo [47],
as well as to the volumetric representation of Penner and Zhang [158].

We chose MPIs because of their ability to represent geometry and texture including
occluded elements, and because the use of alpha enables them to capture partially reflective or
transparent objects as well as to deal with soft edges. Increasing the number of planes (which
we can think of as increasing the resolution in disparity space) enables an MPI to represent
a wider range of depths and allows a greater degree of camera movement. Furthermore,
rendering views from an MPI is highly e�cient, and could allow for real-time applications.

Plane	
sweep

Reference	source

MPI	Representation

…

Synthesized	views

f

Neural	Net

Background	color

Second	source
Blending	weights

Color	images

Alpha	images

Blend

Figure 6.3: Overview of our end-to-end learning pipeline. Given an input stereo image pair,
we use a fully-convolutional deep network to infer the multiplane image representation. For
each plane, the alpha image is directly predicted by the network, and the color image is
blended by using the reference source and the predicted background image, where the blend-
ing weights are also output from the network. During training, the network is optimized
to predict an MPI representation that reconstructs the target views using a di↵erentiable
rendering module (see Section 6.3.3). During testing, the MPI representation is only in-
ferred once for each scene, which can then be used to synthesize novel views with minimal
computation (homography + alpha compositing).

Our representation recalls the multiplane camera invented at Walt Disney Studios and

CHAPTER 6. LEARNING MULTIPLANE IMAGES VIA VIEW SYNTHESIS 69

used in traditional animation [207]. In both systems, a scene is composed of a series of
partially transparent layers at di↵erent distances from the camera.

6.3.2 Learning from stereo pairs

We now describe our pipeline (see Figure 6.3) for learning a neural net that infers
MPIs from stereo pairs. In addition to the input images I1 and I2, we take as input their
corresponding camera parameters c1 = (p1, k1) and c2 = (p2, k2), where pi and ki denote
camera extrinsics (position and orientation) and intrinsics, respectively.

The reference coordinate frame for our predicted scene is placed at the camera center of
the first input image I1 (i.e., p1 is fixed to be the identity pose). Our training set consists of
a large set of hI1, I2, It, c1, c2, cti tuples, where It and ct = (pt, kt) denote the target ground-
truth image and its camera parameters, respectively. We aim to learn a neural network,
denoted by f✓(·), that infers an MPI representation using hI1, I2, c1, c2i as input, such that
when the MPI is rendered at ct it should reconstruct the target image It.

Network input To encode the pose information from the second input image I2, we
compute a plane sweep volume (PSV) that reprojects I2 into the reference camera at a
set of D fixed depth planes.2 Although not required, we choose these depth planes to
coincide with those of the output MPI . This plane sweep computation results in a stack of
reprojected images {Î12 , . . . , Î

D
2 }, which we concatenate along the color channels, resulting in

a H⇥W⇥3D tensor Î2. We further concatenate Î2 with I1 to obtain the input tensor (of size
H ⇥W ⇥ 3(D + 1)) to the network. Intuitively, the PSV representation allows the network
to reason about the scene geometry by simply comparing I1 to each planar reprojection of
I2—the scene depth at any given pixel is typically at the depth plane where I1 and the
reprojected I2 agree. Many stereo algorithms work on this principle, but here we let the
network automatically learn such relationships through the view synthesis objective.

Network output A straightforward choice of the network output would be a separate
RGBA image for each depth plane, where the color image captures the scene appearance
and the alpha map encodes the visibility and transparency. However, such an output would
be highly over-parameterized, and we found a more parsimonious output to be beneficial.
In particular, we assume the color information in the scene can be well modeled by just two
images, a foreground and a background image, where the foreground image is simply the
reference source I1, and the background image is predicted by the network, and is intended
to capture the appearance of hidden surfaces. Hence, for each depth plane, we compute each
RGB image Cd as a per-pixel weighted average of the foreground image I1 and the predicted
background image Îb:

Cd = wd � I1 + (1� wd)� Îb , (6.1)

2For a rectified stereo pair, reprojected images would simply be shifted versions of I2, though we consider
more general configurations in our setup.

CHAPTER 6. LEARNING MULTIPLANE IMAGES VIA VIEW SYNTHESIS 70

where � denotes the Hadamard product, and the blending weights wd are also predicted by
the network. Intuitively, I1 would have a higher weight at nearer planes where foreground
content is dominant, while Îb is designed to capture surfaces that are occluded in the reference
view. Note that the background image need not itself be a natural image, since the network
can exploit the alpha and blending weights to selectively and softly use di↵erent parts of
it at di↵erent depths. Indeed, there may be regions of a given background image that are
never used in new views.

In summary, the network outputs the following quantities: 1) an alpha map ↵d for each
plane, 2) a global RGB background image Îb and 3) a blending weight image wd for each
plane representing the relative proportion of the foreground and background layers at each
pixel. If we predict D depth layers each with a resolution of W ⇥H, then the total number
of output parameters is WH · (2D + 3) (vs. WH · 4D for a direct prediction of an MPI).
These quantities can then be converted to an MPI .

6.3.3 Di↵erentiable view synthesis using MPIs

Given the MPI representation with respect to a reference frame, we can synthesize a novel
view Ît by applying a planar transformation (inverse homography) to the RGBA image for
each plane, followed by a alpha-composition of the transformed images into a single image in a
back-to-front order. Both the planar transformation and alpha composition are di↵erentiable,
and can be easily incorporated into the rest of the learning pipeline.

Planar transformation Here we describe the planar transformation that inverse warps
each MPI RGBA plane onto a target viewpoint. Let the geometry of the MPI plane to
be transformed (i.e. the source) be n · x + a = 0, where n denotes the plane normal,
x = [us, vs, 1]T the source pixel homogeneous coordinates, and a the plane o↵set. Since the
source MPI plane is fronto-parallel to the reference source camera, we have n = [0, 0, 1] and
a = �ds, where ds is the depth of the source MPI plane. The rigid 3D transformation matrix
mapping from source to target camera is defined by a 3D rotation R and translation t, and
the source and target camera intrinsics are denoted ks and kt, respectively. Then for each
pixel (ut, vt) in the target MPI plane, we use the standard inverse homography [71] to obtain

2

4
us

vs

1

3

5 ⇠ ks

✓
R

T +
R

T
tnR

T

a� nRT t

◆
k
�1
t

2

4
ut

vt

1

3

5 (6.2)

Therefore, we can obtain the color and alpha values for each target pixel [ut, vt] by looking
up its correspondence [us, vs] in the source image. Since [us, vs] may not be an exact pixel
coordinate, we use bilinear interpolation among the 4-grid neighbors to obtain the resampled
values (following [92, 235]).

CHAPTER 6. LEARNING MULTIPLANE IMAGES VIA VIEW SYNTHESIS 71

Alpha compositing After applying the planar transformation to each MPI plane, we
then obtain the predicted target view by alpha compositing the color images in back-to-
front order using the standard over operation [160].

6.3.4 Objective

Given the MPI inference and rendering pipeline, we can train a network to predict
MPIs satisfying our view synthesis objective. Formally, for a training set of hI1, I2, It, c1, c2, cti
tuples, we optimize the network parameters by:

min
✓

X

hI1,I2,It,c1,c2,cti

L(R(f✓(I1, I2, c1, c2), ct), It) , (6.3)

where R(·) denotes the rendering pipeline described in Section 6.3.3 that synthesizes a novel
view from the target camera ct using the inferred MPI f✓(I1, I2, c1, c2), and L(·) is the loss
function between the synthesized view and the ground-truth. In this work, we use a deep
feature matching loss (also referred to as the “perceptual loss” [97, 36, 228]), and specifically
use the normalized VGG-19 [180] layer matching from [21]:

L(Ît, It) =
X

l

�lk�l(Ît)� �l(It)k1 , (6.4)

where {�l} is a set of layers in VGG-19 (conv1 2, conv2 2, conv3 2, conv4 2, and conv5 2)
and the weight hyperparameters {�l} are set to the inverse of the number of neurons in each
layer.

6.3.5 Implementation details

Unless specified otherwise, we use D = 32 planes set at equidistant disparity (inverse
depth) with the near and far planes at 1m and 100m, respectively.

Network architecture We use a fully-convolutional encoder-decoder architecture (see
Table 6.1 for detailed specification). The encoder pathway follows similar design as VGG-19
[180], while the decoder consists of deconvolution (fractionally-strided convolution) layers
with skip-connections from lower layers to capture fine texture details. Dilated convolu-
tions [222, 20] are also used in intermediate layers conv4 1,2,3 to model larger scene context
while maintaining the spatial resolution of the feature maps. Each layer is followed by a ReLU
nonlinearity and layer normalization [7] except for the last layer, where tanh is used and no
layer normalization is applied. Each of the last layer outputs (32 alpha images, 32 blending
weight images, and 1 background RGB image) is further scaled to match the corresponding
valid range (e.g. [0, 1] for alpha images).

CHAPTER 6. LEARNING MULTIPLANE IMAGES VIA VIEW SYNTHESIS 72

Layer k s d chns in out input

conv1 1 3 1 1 99/64 1 1 I1 + Î2

conv1 2 3 2 1 64/128 1 2 conv1 1
conv2 1 3 1 1 128/128 2 2 conv1 2
conv2 2 3 2 1 128/256 2 4 conv2 1
conv3 1 3 1 1 256/256 4 4 conv2 2
conv3 2 3 1 1 256/256 4 4 conv3 1
conv3 3 3 2 1 256/512 4 8 conv3 2
conv4 1 3 1 2 512/512 8 8 conv3 3
conv4 2 3 1 2 512/512 8 8 conv4 1
conv4 3 3 1 2 512/512 8 8 conv4 2

conv5 1 4 .5 1 1024/256 8 4 conv4 3 + conv3 3
conv5 2 3 1 1 256/256 4 4 conv5 1
conv5 3 3 1 1 256/256 4 4 conv5 2
conv6 1 4 .5 1 512/128 4 2 conv5 3 + conv2 2
conv6 2 3 1 1 128/128 2 2 conv6 1
conv7 1 4 .5 1 256/64 2 1 conv6 2 + conv1 2
conv7 2 3 1 1 64/64 1 1 conv7 1
conv7 3 1 1 1 64/67 1 1 conv7 2

Table 6.1: Our network architecture, where k is the kernel size, s the stride, d kernel dilation,
chns the number of input and output channels for each layer, in and out are the accumulated
stride for the input and output of each layer, and input denotes the input source of each
layer with + meaning concatenation. See Section 6.3.5 for more details.

Training details We implement our system in TensorFlow [1]. We train the network using
the ADAM solver [114] for 600K iterations with learning rate 0.0002, �1 = 0.9, �2 = 0.999,
and batch size 1. During training, the images and MPI have a spatial resolution of 1024⇥576,
but the model can be applied to arbitrary resolution at test time in a fully-convolutional
manner. Training takes about one week on a Tesla P100 GPU.

6.4 Data

For training we require triplets of images together with their relative camera poses and
intrinsics. Creating such a dataset from scratch would require carefully capturing simulta-
neous photos of a variety of scenes from three or more appropriate viewpoints per scene.
Instead, we identified an existing source of massive amounts of such data: video clips on
YouTube shot from a moving camera. By sampling frames from such videos, we can obtain
very large amounts of data comprising multiple views of the same scene shot from a variety
of baselines. For this approach to work, we need to be able to identify suitable video clips,

CHAPTER 6. LEARNING MULTIPLANE IMAGES VIA VIEW SYNTHESIS 73

i.e., clips shot from a moving camera but with a static scene, with minimal artifacts such as
motion blur or rolling-shutter distortion, and without other editing e↵ects such as titles and
overlays. Finally, given a suitable clip, we must estimate the camera parameters for each
frame.

While many videos on YouTube are not useful for our purposes, we found a surprisingly
large amount of suitable content, across several categories of video. One such category
is real estate footage. Typical real estate videos feature a series of shots of indoor and
outdoor scenes (the interior of a room or stairway, exterior views of a house, footage of the
surrounding area, etc). Shots typically feature smooth camera movement and little or no
scene movement. Hence, we decided to build a dataset from real estate videos as a large and
diverse source of multi-view training imagery.

Accordingly, the rest of this section describes the dataset we collected, consisting of
over 7,000 video clips from 1 to 10 seconds in length, together with the camera position,
orientation and field of view for each frame in the sequence. To build this dataset, we devised
a pipeline for mining suitable clips from YouTube. This pipeline consists of four main steps:
1) identifying a set of candidate videos to download, 2) running a camera tracker on each
video to both estimate an initial camera pose for each frame and to subdivide the video into
distinct shots/clips, 3) performing a full bundle adjustment to derive high-quality poses for
each clip, and 4) filtering to remove any remaining unsuitable clips.

6.4.1 Identifying videos

We manually found a number of YouTube channels that published real estate videos
exclusively or almost exclusively, and used the YouTube API to retrieve videos IDs listed
under each channel. This yielded a set of approximately 1,500 candidate videos.

6.4.2 Identifying and tracking clips with SLAM

We wish to subdivide each video into individual clips, and identify clips that have signif-
icant camera motion. We found few readily available tools for performing camera tracking
on arbitrary videos in the wild. Initially, we tried to use structure-from-motion methods
developed in computer vision, such as Colmap [174]. These methods are optimized for
photo collections, and we found them to be slow and prone to failure when applied to video
sequences. Instead, we found that for our purposes we could adapt modern algorithms for
SLAM (Simultaneous Localization and Mapping) developed in the robotics community.

Visual SLAM methods take as input a series of frames, and build and maintain a sparse
or semi-dense 3D reconstruction of the scene while estimating the viewpoint of the current
frame in a way consistent with this reconstruction. We use the ORB-SLAM2 system [151],
though other methods could also apply [49, 41].

SLAM algorithms are not designed to process videos containing multiple shots with cuts
and dissolves between them, and they typically care only about the accuracy of the current
frame’s pose—in particular, as the scene is refined over time, earlier frames are not updated

CHAPTER 6. LEARNING MULTIPLANE IMAGES VIA VIEW SYNTHESIS 74

and may become inconsistent with the current state of the world. To deal with these issues,
our approach is as follows: 1. Feed successive frames of the video to ORB-SLAM2 as
normal. 2. When the algorithm reports that it has begun to track the camera, mark the
start of a clip. 3. When ORB-SLAM2 fails to track K = 6 consecutive frames, or when we
reach a maximum sequence length L, consider the clip to have ended. 4. Keeping the final
scene model constant, reprocess all frames in the clip so as to estimate a consistent pose for
each camera. 5. Re-initialize ORB-SLAM2 so it is ready to start tracking a new clip on
subsequent frames. In this way, we use ORB-SLAM2 not just to track frames, but also to
divide a video into clips using tracking failure as a way to detect shot boundaries.

Since SLAM methods, including ORB-SLAM2 , require known camera intrinsics such as
field of view (which are unknown for arbitrary online videos), we simply assume a field of
view of 90 degrees. This assumption worked surprisingly well for the purposes of identifying
good clips. Finally, for the sake of speed, at this stage we process a lower resolution version
of the video. The result of the above processing is a set of clips or sequences for each video,
along with a preliminary set of camera parameters.

6.4.3 Refining poses with bundle adjustment

We next process each sequence at higher resolution, using a standard structure-from-
motion pipeline to extract features from each frame, match these features across frames, and
perform a global bundle adjustment using the Ceres non-linear least squares optimizer [3].
We initialize the cameras using the poses found by ORB-SLAM2 , and add a weak penalty
to the optimization that encourages the parameters not to stray too far from their initial
values. The output for each sequence is a set of adjusted camera poses, an estimated field
of view, and a sparse point cloud representing the scene. An example output is illustrated
in Figure 6.4.

One di�culty with this process is that there is no way to determine global scene scale,
so our reconstructed camera poses are up to an arbitrary scale per clip. This ambiguity will
become important when we represent scenes with MPIs , because our representation is based
on layers at specific depths, as described in Section 6.3.5. Hence, we “scale-normalize” each
sequence using the estimated 3D point cloud, scaling it so that the nearest scene geometry is
approximately a fixed distance from the cameras. In particular, for each frame we compute
the 5th percentile depth among all point depths from that frame’s camera. Computing this
depth across all cameras in a sequence gives us a set of “near plane” depths. We scale
the sequence so that the 10th percentile of this set of depths is 1.25m. (Recall that our
MPI representation uses a near plane of 1m.)

6.4.4 Filtering and clipping

If the source video contains cross-fades, some frames may show a blend of two scenes.
We discard ten frames from the beginning and end of each clip, which eliminates most such
frames.

CHAPTER 6. LEARNING MULTIPLANE IMAGES VIA VIEW SYNTHESIS 75

Occasionally the estimated camera poses for a sequence do not form a smooth track,
which can indicate that we were unable to track the camera accurately. We define a frame
to be smooth if its camera position pi is su�ciently close to the average of the two adjacent
camera positions, specifically if kpi�(pi+1+pi�1)/2k < 0.2⇥kpi+1�pi�1k. For each sequence,
we find the longest consecutive subsequence in which all frames are smooth, and discard the
rest.

Finally we discard all remaining sequences of fewer than 30 frames. From an input set
of approximately 1500 videos, this pipeline produces a set of ⇠7,000 sequences with a total
of ⇠750K frames.

Figure 6.4: Dataset output and frame selection, showing estimated camera trajectory and
sparse point cloud. See section 6.4.5 for a detailed description.

6.4.5 Choosing training triplets

Figure 6.4 shows an example of the result of this processing, including input video frames
[a] (just two frames are shown here), and the sparse point cloud [b] and camera track [c]
resulting from the structure from motion pipeline. As described in Section 6.3.2, for our
application we require tuples hI1, I2, It, c1, c2, cti, including cases where It is an extrapolation
from I1 and I2. We sample tuples from our dataset by first selecting from each sequence
a random subsequence [d] of length 10, with stride (gap between selected frames) chosen
randomly from 1 to 10. From this subsequence we then randomly choose two di↵erent
frames and their poses to be the inputs I1, I2, c1, and c2 [e], and a third frame to be the
target It, ct.

Depending on which frames are chosen, the target frame may require extrapolation [f]
(of up to a factor of nine times the distance between I1 and I2, assuming a linearly moving
camera) or interpolation [g] from the inputs. We chose to learn to predict views from a

CHAPTER 6. LEARNING MULTIPLANE IMAGES VIA VIEW SYNTHESIS 76

variety of positions relative to the source imagery so as not to overfit to generating images
at a particular distance during training.

6.5 Experiments and results

In this section we evaluate the performance of our method, and compare it with several
view synthesis baselines. Our test set consists of 1,329 sequences that did not overlap with
the training set. For each sequence we randomly sample a triplet (two source frames and
one target frame) for evaluation. We first visualize the MPI representation inferred by our
model, and then provide detailed comparison with other recent view synthesis methods. We
further validate our model design with various ablation studies, and finally highlight the
utility of our method through several applications. For quantitative evaluation, we use the
standard SSIM [203] and PSNR metrics.

6.5.1 Visualizing the multiplane images

We visualize examples of the MPI representation inferred by our network in Figure 6.5.
Despite having no direct color or alpha ground-truth for each MPI plane during training,
the inferred MPI is able to capture the scene appearance in a layer-wise manner (near to
far) respecting the scene geometry, which allows realistic rendering of novel views from the
representation.

We also demonstrate view extrapolation capability of the MPI representation in Fig-
ure 6.6, where we use the central two frames of a registered video sequence as input, and
synthesize the previous and future frames with the inferred MPI . Please see the supplemental
video for animations of these rendered sequences.

6.5.2 Comparison with Kalantari et al.

We compare our model with Kalantari et al. [100], a state-of-the-art learning-based view
synthesis method. A critical di↵erence compared to our method is that Kalantari et al. has
an independent rendering process for each novel view of the scene, and needs to re-run the en-
tire inference pipeline every time a new view is queried, which is computationally prohibitive
for real-time applications. In contrast, our method predicts a scene-level MPI representa-
tion that can render any novel viewpoint in real-time with minimal computation (inverse
homography + alpha compositing).

We train and test two variants of their method on our data: 1) same network architecture
(4 convolution layers) and pixel reconstruction loss from the original paper; 2) our network
architecture (which is deeper with skip connections) with perceptual loss. For fair compari-
son, we use the same number of input planes as ours for constructing the plane sweep volume
in their input. See Section 6.5.4 for discussion on the e↵ect of varying the number of depth
planes.

CHAPTER 6. LEARNING MULTIPLANE IMAGES VIA VIEW SYNTHESIS 77

Input	images Inferred	MPI	Representation A	novel	view	synthesized	from	MPI

Figure 6.5: Sample visualization of the input image pair (left), our inferred MPI represen-
tation (middle), where we show the alpha-multiplied color image at a subset of the depth
planes from near to far (top to bottom, left to right), and novel views rendered from the
MPI (right). The predicted MPI is able to capture the scene appearance in a layer-wise
manner (near to far) respecting the scene geometry.

Table 6.2 shows mean SSIM and PSNR similarity metrics for each method across our test
set. To measure if one method is consistently better than another, we also rank the methods
on each test triplet and compute the average rank for each method. An average rank of 1.0
for PSNR, for example, would mean that this method always had the highest PSNR score.

We find that 1) our network architecture is significantly more e↵ective than the simple
4-layer network used in the original Kalantari paper; 2) the VGG perceptual loss helps im-

CHAPTER 6. LEARNING MULTIPLANE IMAGES VIA VIEW SYNTHESIS 78

Input	viewsSynthesized	views Synthesized	views

Figure 6.6: Sample view extrapolation results using multiplane images . The central two
frames (green) are the input to our network, and the inferred MPI is used to render both
past and future frames in the same video sequence.

Method Network Loss SSIM PSNR
Mean Rank Mean Rank

Kalantari Kalantari pixel 0.696 4.0 31.41 3.7
Kalantari Ours VGG 0.822 2.1 32.93 2.0
Ours Ours Pixel 0.812 2.6 32.42 2.8
Ours Ours VGG 0.835 1.4 33.10 1.5

Table 6.2: .
Quantitative comparison between our model and variants of the baseline Kalantari

model [100]. Higher SSIM/PSNR mean and lower rank are better. See Section 6.5.2 for
more details.

prove the performance over the pixel reconstruction loss (see Section 6.5.4 for discussion);
3) our model outperforms the better of the two Kalantari variants (VGG with our network
architecture), indicating the high-quality of novel views rendered from the MPI representa-
tion.

We also observe that when rendering continuous view sequences of the same scene, our
results tend to be more spatially coherent than Kalantari, and produce fewer frame-to-frame
artifacts. We hypothesize that this is because, unlike the Kalantari model, we infer a single
scene-level MPI representation that is shared for rendering all target views, which implicitly
imposes a smoothness prior when rendering nearby views. Please see the video for qualitative
comparisons of our method to Kalantari on rendered sequences.

6.5.3 Comparison with extrapolation methods

We compare with a non-learning view extrapolation approach by Zhang et al. [229], which
reconstructs a 4D light field from micro-baseline stereo pairs using disparity-assisted phase
based synthesis (DAPS). For fair comparison, we directly apply our model trained on the real
estate data to the HCI light field dataset [204]. As shown in Figure 6.7, our model generalizes

CHAPTER 6. LEARNING MULTIPLANE IMAGES VIA VIEW SYNTHESIS 79

well on the HCI dataset without any fine-tuning, and compares favorably with Zhang et al.
around depth boundaries, where our method introduces fewer distortion artifacts. We find
that the method of Zhang et al. performs well for small view extrapolations, but breaks down
more quickly around object boundaries with increasing extrapolation distance.

We also trained appearance flow [235] on our dataset, but found rendered views exhib-
ited significant artifacts, such as straight lines becoming distorted. This method appears
more suited to object-centric synthesis than to scene rendering, and it is not able to fully
exploit correlations between views since the trained network operates on each input image
separately.

Figure 6.7: Comparison with Zhang et al. [229] on the HCI light field dataset [204]. Note
the di↵erences around object boundaries.

6.5.4 Ablation studies

Perceptual loss To illustrate the e↵ect of the perceptual loss, we compare our final
model with a baseline model trained using L1 loss in the RGB pixel space. As shown in
Figure 6.8, our final model trained using the perceptual loss better preserves object structure
and texture details in the synthesized results than the baseline. The benefit of training with
perceptual loss is further verified with quantitative evaluation in Table 6.2.

CHAPTER 6. LEARNING MULTIPLANE IMAGES VIA VIEW SYNTHESIS 80

Color layer prediction In Section 6.3.2, we propose that our network create the color
values for each MPI plane as a weighted average of a network predicted “background” image
and the reference source image. Here we compare several variants of the color prediction
format (ordered by increasing level of representation flexibility):

1. None. No color image or blending weights are predicted by the network. The reference
source image is used as the color image at each MPI plane.

2. Single image. The network predicts a single color image shared for all MPI planes.

3. Background + blending weights (our preferred format). The network predicts a back-
ground image and blending weights. The reference source is used as the foreground
image.

4. Foreground + background + blending weights. In contrast to the previous variant,
instead of using the reference source as the foreground image, the network predicts an
extra foreground image for blending with the background.

5. All images. The network directly outputs the color image at each MPI plane.

We compare the performance of these variants in Table 6.3 and show a qualitative example in
Figure 6.9. Although “BG+blending weights” slightly outperforms the other variants, all the
variants (other than “FG+BG+blending weights”) produce competitive results. The “None”
and “Single image” variants su↵er in areas where the target view contains details that are
occluded in the reference image but visible in the second input image. The “BG+blending
weights” format can represent these areas better since not all MPI planes need to have the
same color data. The “FG+BG+blending weights” variant is slightly more powerful as the
foreground image is not restricted, and the “All images” variant, with a separate color image
for each plane, is the only variant that can fully represent a scene with depth complexity
greater than 2. However, in our experiments these last two variants both performed slightly
worse than “None”. We hypothesize that the larger output space and less utilization of the
reference image makes the learning harder with these output formats, and that the relatively
small camera movement limits the depth complexity required.

Number of depth planes As shown in Table 6.4, our model performance improves as
more depth planes are used in the inferred MPI representation. We are currently limited
to 32 planes due to memory constraints, but could overcome this with future hardware or
alternative networks. As seen in Figure 6.10, the greater the o↵set between the reference
view and the rendered view, the more planes are needed to render the scene accurately.

6.5.5 Applications

In this section we describe two applications of our trained model: 1) taking a narrow-
baseline stereo pair from a cell phone camera and extrapolating to an average human

CHAPTER 6. LEARNING MULTIPLANE IMAGES VIA VIEW SYNTHESIS 81

Figure 6.8: Comparison between the models trained using pixel reconstruction loss and VGG
perceptual loss. The latter better preserves object structure, and tends to produce sharper
synthesized views.

Color layer prediction SSIM PSNR
Mean Rank Mean Rank

None 0.833 2.3 33.06 2.1
Single image 0.822 3.9 32.51 3.9
BG + Blend weights 0.835 1.6 33.09 1.6

FG + BG + Blend weights 0.819 4.1 32.50 3.7
All images 0.825 3.2 32.53 3.8

Table 6.3: Quantitative evaluation of variants of network color output, ordered by increasing
degree of flexibility (top to bottom). Higher SSIM/PSNR mean and lower rank are better.

interpupillary-distance (IPD)-spaced stereo pair, and 2) taking an image pair from a large-
baseline stereo camera and extrapolating a “1D lightfield” of views between and beyond the
source images.

Cell phone image pairs ! IPD stereo pair We captured a set of image pairs with an
iPhone X, a recent dual-lens camera phone with a baseline of ⇠1.4cm, using an app that
saves both captured views. Because the focal lengths of the two cameras are di↵erent, the
app crops the wider-angle image to match the narrower field-of-view image. For each image

CHAPTER 6. LEARNING MULTIPLANE IMAGES VIA VIEW SYNTHESIS 82

None Single image BG+blend FG+BG+blend All images Ground-truth

Figure 6.9: Comparison between di↵erent color prediction formats. Note in particular the
rendering of disoccluded background details, such as the rear wall (red), its reflection in the
table surface (green), cupboard door (yellow) and corner of vase (blue). All the variants (ex-
cept “FG+BG+blend”) produce competitive results with slight di↵erences. See Section 6.5.4
for more details.

MPI depth planes SSIM PSNR
Mean Rank Mean Rank

D = 8 0.766 2.99 32.12 2.96
D = 16 0.812 1.98 32.73 1.97
D = 32 0.835 1.03 33.09 1.07

Table 6.4: Evaluating the e↵ect of varying the number of depth planes for the MPI repre-
sentation. Higher SSIM/PSNR mean and lower rank are better.

pair, we ran a calibration procedure to refine the camera intrinsics using their nominal values
as initialization. We then applied our model (trained on real estate data) to magnify the
baseline to ⇠6.3cm (a magnification factor of 4.5x). Several results are shown in Figure 6.11
as anaglyph images, and in the supplemental video as sway animation. Figure 6.11 highlights
how the extrapolated images provide a more compelling sense of 3D, and illustrates how our
model can generalize to new scenarios that are atypical of real estate scenes (such as the
sculpture of Mark Twain in the first example). Finally, notice that our method can handle

CHAPTER 6. LEARNING MULTIPLANE IMAGES VIA VIEW SYNTHESIS 83

Figure 6.10: E↵ect of varying the number of depth planes at di↵erent view o↵sets. For two
regions of the top image, we show view extrapolations from MPIs with varying numbers of
planes. The number of pixels shown is the disparity between front and back planes relative to
the reference view. The larger the number of planes, the farther the view can be extrapolated
before introducing artifacts. Note the edge of the counter in the first example, and the edges
of objects in the second example. (Best viewed zoomed in.)

interesting materials (e.g. the reflective glass and glossy floor in the first scene).

Stereo pairs to extended 1D lightfield We also demonstrate taking a large-baseline
stereo pair and synthesizing a continuous “1D lightfield”—i.e., a set of views along a line
passing through the source views. For this application, we downloaded stereo pairs shot by
a Fujifilm FinePix Real 3D W1 stereo point-and-shoot camera with a baseline of 7.7cm, and
extrapolated to a continuous set of views with a baseline of 26.7cm (a magnification factor of
⇠3.5x). Figure 6.12 shows an example input and output as anaglyphs; see the supplemental
video for animations of the resulting sequences. This input baseline, magnification factor,
and scene content represent a challenging case for our model, and artifacts such as stretching
in the background can be observed. Nonetheless, the results show plausible interpolations
and extrapolations of the source imagery.

CHAPTER 6. LEARNING MULTIPLANE IMAGES VIA VIEW SYNTHESIS 84

Original baseline Magnified baseline

Figure 6.11: Example stereo magnifications for dual-lens camera. Left: raw stereo pairs
captured by an iPhone X, displayed as red-cyan anaglyph images, with a baseline of ⇠1.4cm.
Right: the same images but with baseline synthetically magnified to ⇠6.3cm. Note the
significantly enhanced stereo e↵ect. (Best viewed zoomed in and with 3D glasses.)

6.6 Discussion

Having trained on a large and varied dataset, our view synthesis system based on multi-
plane images is able to handle both indoor and outdoor scenes. We successfully applied it
to scenes which are quite di↵erent from those in our training dataset. The learned MPIs are
e↵ective at representing surfaces which are partially reflective or transparent. Figure 6.13 (a)
and (b) show two examples of such surfaces, rendered as anaglyphs with stereo-magnification.

Our method has certain limitations. When fine detail appears in front of a complex
background, our model can struggle to place it at the correct depth. Figure 6.13 (c) shows
a case where overhead cables appear to jump between two di↵erent depths. This may
suggest that depth decisions are being made too locally. Figure 6.13 (d) shows the result
of extrapolating beyond the limits of the MPI representation. When the disparity between
adjacent layers exceeds one pixel we may see duplicated edges, producing a “stack of cards”

CHAPTER 6. LEARNING MULTIPLANE IMAGES VIA VIEW SYNTHESIS 85

Original baseline Magnified baseline

Figure 6.12: Example stereo magnifications for Fujifilm Real 3D stereo camera. Left: a
raw stereo pair from the camera, displayed as red-cyan anaglyph images, with a baseline
of ⇠7.7cm. Right: the same images but with baseline synthetically magnified to ⇠26.7cm.
(Best viewed zoomed in and with 3D glasses.) (Photo used under CC license from Flickr
user heiwa4126.)

ba dc

Figure 6.13: Challenging cases. Reference images at top, rendered anaglyph details at
bottom: (a) glass table with reflection and transparency, (b) reflection in a dusty curved
mirror, (c) fine wires are confused with background, (d) extrapolation beyond the limits of
the representation gives a ‘stack of cards’ e↵ect.

e↵ect.
In conclusion, we presented a new representation, training setup, and approach to learning

view extrapolation from video data. We believe this framework can also generalize to a
variety of di↵erent tasks, including extrapolating from more than two input images or from
only one, and generating lightfields allowing view movement in multiple dimensions.

86

Part III

Learning gradual image

transformation

87

Chapter 7

Learning Gradual Image

Transformation

The world around us is constantly changing: day turning to dusk, fall to winter, frown
to smile. In this chapter, we seek to uncover the gradual changes implicit in a dataset of
static photos. We train a neural network to act as a di↵erential transformer that takes
an image as input and perturbs it slightly in a target direction (e.g., a sub-domain of the
dataset). Multiple applications of this transformer then “walk” along the natural image
manifold toward the target. However, capturing direct training data for such transient
transformations is often di�cult. For instance, to capture season progression of a scene, one
would need to place the camera at the same spot over a period of several months. Similarly,
to capture the aging process of a person, one would need photos of the same person over
many years.

Instead of using training data in the form of multiple images of the same instance, we
propose a method that is able to learn the gradual transformation given only two unpaired
sets of images – one in the source domain (e.g. non-winter) and one in the target domain
(e.g. winter). Here “unpaired” means there are no explicit associations between the two
sets. At test time, our model applies to a single input image from the source domain, and
generates a sequence of gradual progression towards the target domain. We demonstrate
that this method can create realistic “movies” of seasons and lighting changes for scenes and
attribute progression for facial images.

7.1 Introduction

No image is an island. Rather, it is but a speck in the vast space of possible natural
images, connected to its almost-identical cousins by various infinitesimally small transfor-
mations. Yet, of the many conceivable ways to transform an image, only a tiny subset
are what we would consider meaningful, and discovering these from raw data is a di�cult
open problem. A classic way of attacking it is by attempting to “disentangle” the under-

CHAPTER 7. LEARNING GRADUAL IMAGE TRANSFORMATION 88

lying global factors of variation within an image set. Typically, this is done by learning an
invertible mapping from the data manifold to a latent vector space where the dimensions
are either uncorrelated (e.g., PCA [99]) or independent (e.g., ICA [88], VAEs [113]). One
then hopes that the disentangled dimensions will correspond to meaningful transformations.
Although impressive results have been achieved in certain highly-constrained settings, such
as on faces [12], in general the latent dimensions only rarely correspond to interpretable
transformations [34]. One possible reason is that these methods model variation through an
explicit, global representation, with transformations modeled as directions in a vector space.
But the natural image manifold is so vast and heterogeneous, that it is hard to place a global
coordinate system on it, i.e. have a global z vector where each dimension controls a specific,
globally-consistent factor of variation.

Often, when modeling the full space is too di�cult, one can make progress by modeling
local neighborhoods instead. That is, rather than represent the data manifold through a
global embedding, we implicitly represent it via a set of locally valid transformations. Classic
manifold learning methods such as locally-linear embedding [169] and Isomap [189] represent
transformations locally and non-parametrically by interpolating between datapoints, but
ultimately use these to recover a global embedding.

In this work, we sidestep the global problem entirely, instead representing transformations
as parametric functions, implemented as deep nets, that locally perturb data points. We
call these di↵erential transformations. Specifically, we learn a function G : X ! X that
describes a di↵erential transformation starting from datapoint x 2 X that keeps us on
the data manifold, X . Applying a series of such transformations, G � · · · � G � x, while
regularizing G to only make small changes, produces a smooth progression that “walks”
along the manifold in a particular direction.

At training time, our model learns from a set of images from a particular domain (e.g.,
faces, scenes), with some of the images labeled as having a target attribute (e.g., smiling,
snow). At test time, the input to our model is a single image and our goal is to apply small
consistent transformations to the input image such that it exhibits more and more of the
target attribute.

We achieve this via the interplay of three loss terms. A di↵erential loss encourages that
the transformation move a small amount toward a target domain (e.g., winter). At the same
time, an adversarial loss keeps the transformation from walking o↵ the data manifold of
natural images. Finally, a content-preservation loss penalizes transformations that change
the “content” of the image, while allowing its style to be modified. Together, these terms
produce smooth and natural transformations that can be used to turn a static image into a
movie of desired stylistic change.

7.2 Background

Image generation is a vast field of active research. Our approach touches on a few topics
in this area.

CHAPTER 7. LEARNING GRADUAL IMAGE TRANSFORMATION 89

Generative adversarial networks (GANs). GANs learn a mapping from random
noise to images such that the output cannot be distinguished from real images by an adver-
sary. Our objective can be understood as a GAN where the input is a natural image rather
than a random noise vector. This can be seen as an alternate strategy to generating samples
from the distribution of natural images, where we perturb existing images to generate new
ones rather than starting from scratch.

Image-to-image translation. Image-to-image translation is the problem of converting
one visual representation of a scene into another, e.g., sketch to photo, or winter scene to
summer scene [91]. Our work is especially related to image-to-image methods that directly
model the input-output mapping with a black-box function approximator that does not opti-
mize an objective over internal latent variables. These methods do not require architectural
bottlenecks, which allow them to scale relatively easily to high-resolution mappings (e.g.,
[119, 179, 97, 91, 21]). Often, these methods are given paired data {x, y}, and learn a re-
gressor G : x ! y. In such settings we are given supervision at the level of source and target
image instances. Other methods consider the unpaired setting in which supervision is at
the level of source and target image sets X and Y , with no explicit correspondence between
the two, and the goal is to learn the mapping G : X ! Y [238, 111, 219, 132, 186]. In the
present work, we investigate if we can learn meaningful image-to-image translation functions
of the form G : X ! X , that walk along the manifold X , with side supervision guiding the
direction in which we walk.

Attribute-conditioned image generation. Attribute-conditioned generative models
learn to synthesize realistic images that exhibit a given attribute. Many approaches model
attributes in a latent embedding space. Given image sets X and Y corresponding to di↵erent
values of an attribute (e.g., blond versus brunette), a progression of synthesized results can
be produced by traversing the latent space between the domains [195]. In this setting we
are given supervision in the form of image sets. Other methods consider a setting where
supervision is given in the form of {image, attribute-value} pairs. Here the task is to generate
a realistic image conditioned on the latent embedding and given attributes [214, 117, 121,
159]. These methods explicitly model attributes as latent variables in a generative model,
and achieve transformations by modifying the latent state.

In contrast, our method avoids latent variables and instead directly models attribute
changes via an image-to-image transformation function. By avoiding low-dimensional latent
representations, our method can scale to high-resolution visual changes. In addition, previous
methods have mostly focused on binary attribute changes (e.g., convert a summer scene to
a winter scene), rather than continuous changes (show the gradual progression of snow
accumulating as the season changes). The previous methods can be extended to modeling
gradual changes by training on binary attributes and then at inference time interpolating
continuously in latent space between (and beyond) the binary end points, as was done in
FaderNets [121]. Such methods rely on the fact that small changes in latent space tend
to produce small changes in image style, but this criterion is not explicitly enforced. In
contrast, we add an explicit term to encourage smooth and gradual changes in style.

Style transfer. Our task is also closely related to the problem of style transfer. Many

CHAPTER 7. LEARNING GRADUAL IMAGE TRANSFORMATION 90

approaches to style transfer apply the “style” of an exemplar image to the “content” of
another image, e.g., [56, 140, 127, 75]. Our method di↵ers from these in that we do not
require exemplar style targets, instead we learn the style from a target set of images, and only
at training time. Methods for artistic style transfer have been extended to this same setting,
where no exemplar is required at test time, but these methods have only been successfully
applied on artistic domains where style is well modeled by Gram matrix statistics [193, 97].
Our method additionally di↵ers from past style transfer work in that these methods typically
do not explicitly enforce gradual changes.

Video prediction. The problem of future frame prediction is another instance of dif-
ferential transformation. Methods that tackle this problem generate future frames given
a current frame (or frames) as input, typically treating the problem as supervised regres-
sion [237, 144], or as generative modeling of a video sequence [198]. Our method di↵ers in
that we do not train on video data, instead trying to infer smooth transformations from a
set of static images, using only domain-level supervision (i.e. certain images are labeled as
belonging to the target domain).

7.3 Approach

Given an image set X , we learn a function G that predicts a sequence of transformations
satisfying three key properties: 1) plausibility—lying on the image manifold defined by set X ,
2) consistency—frames of the sequence are related by a common small-step transformation
and 3) identity—transformed frames maintain the identity of the objects and scenes of the
input image. We dub this problem di↵erential image transformation. Prior work that tackles
this problem is embedding-based and hopes to learn a single knob that linearly controls the
degree of transformation. In contrast, our key idea is to formulate the problem as an image-
to-image translation and explicitly force G to learn di↵erential transformations such that
iterative application of G result in a sequence of small changes to the input image towards
a specified direction. We use the following three losses to ensure this.

7.3.1 Adversarial loss

To constrain each generated image to be a plausible sample from the image set X , we
apply the LS-GAN [143] formulation of the adversarial objective [60], which can be expressed
as

Ladv = Ex⇠pdata(x)[(D(x)� 1)2 +D(G(x))2] , (7.1)

where G tries to generate images G(x) that look similar to images from X , while D aims to
distinguish between generated samples G(x) and real samples x. The above objective can
be formulated as a minimax game between D and G: minG maxD Ladv(G,D).

CHAPTER 7. LEARNING GRADUAL IMAGE TRANSFORMATION 91

Figure 7.1: Left : Visualization of the di↵erential loss, Eqn. 7.2. G is encouraged to gradually
move its input xA toward domain XB, so that G(xA) is closer to XB than xA, G(G(xA)) is
closer still and so forth. Right : Graph of Eqn. 7.3 for varying values of ↵ that determines
the saturation point of the di↵erential loss.

7.3.2 Di↵erential loss

While the adversarial loss forces the generated image G(x) to lie on the image manifold
defined by X , it does not guarantee that G(x) moves in a meaningful and consistent direction
along the manifold. Therefore, we introduce a di↵erential loss that encourages G(x) to be
closer to a target domain than the input x. Intuitively, if the di↵erential loss is successfully
minimized, iterative application of G should move the generated images closer and closer to
the target domain in a consistent way.

We assume that X is roughly split into two sub-domains X = {XA,XB}. Given an
image sample xA from XA, we would like the generated image G(xA) to be closer to XB
than the input xA, as depicted in Figure 7.1 (left). In other words, we want to learn a
function G such that dist(G(xA),XB) < dist(xA,XB) for some distance metric dist(·).
This could naively be achieved by minimizing dist(G(xA),XB) � dist(xA,XB). However,
such an objective does not encourage di↵erential learning as the loss is linear with respect
to dist(G(xA),XB), so a direct optimization could get unbounded reward for taking larger
and larger steps towards XB. Instead, we use a modified loss function (with the same form
as the ELU [27] activation function) that is attenuated via a parameter ↵ in the negative
half-space to encourage learning only small, local changes. Intuitively, a small ↵ encourages
small di↵erential changes, as shown in Figure 7.1 (right). The di↵erential objective then
becomes

Ldi↵ = �(dist(G(xA),XB)� dist(xA,XB)) , (7.2)

where

�(y) =

(
y if y > 0,

↵(exp(y)� 1) otherwise.
(7.3)

CHAPTER 7. LEARNING GRADUAL IMAGE TRANSFORMATION 92

The hyperparameter ↵ controls the value to which the loss saturates. Note that this is only
one of several possible forms of di↵erential loss. Other forms could include, for example, the
hinge loss or using a constant (small) step size.

We use a learned distance metric for dist(·). Specifically, in addition to the generator G
and the discriminator D, we also train a sub-domain classier C that distinguishes between
images from XA and images from XB. However, instead of using the standard cross entropy
loss, we optimize C with the mean-square error (MSE) with respect to the target label (0
for xA and 1 for xB), which we have found to empirically work better. The classifier score
(output of the final layer) is used to measure the distance between generated images and the
target domain XB.

7.3.3 Content loss and the full objective

Since our goal is to only make stylistic changes to the input image, we use an additional
content loss (in line with prior style transfer works [56, 97]) in order to preserve the identity
of the objects depicted in the input image. In particular, we use the MSE loss on the conv3 3

features from VGG-16 [180] between xA and G(xA).
Our full objective becomes

Lfull = Ladv + �Ldi↵ + �Lcontent , (7.4)

where � and � are hyperparameters balancing the importance among the loss terms.

7.3.4 Implementation details

Architecture. We adopt the generator and discriminator architecture from CycleGAN [238]
who base their generator on Johnson et al. [97]. The domain classifier follows the same
architecture as the discriminator.

Training details. We use ↵ = 0.25, � = 0.5, � = 0.25 for all our experiments. We use the
Adam optimizer [114] with a batch size of 1, learning rate of 0.0002 for G and 0.0001 for D.

7.4 Experiments

We apply our approach to a variety of datasets, and compare with baselines using au-
tomatic as well as perceptual metrics. For evaluation we mainly use two datasets: 1)
Transient attributes database [119] that contains 8, 571 images from 101 webcams anno-
tated with 40 transient attribute labels (e.g. season, weather conditions, lighting), and 2)
CelebA-HQ [101] that consists of 30, 000 high-quality celebrity facial images (with attribute
annotations) mined and processed from the original CelebA dataset [133]. For the transient
attributes database, we randomly split the webcams into 90 for training and 11 for testing.
Note that we do not use the webcam information for training our model, and treat the data
as an unordered set of images. For the CelebA-HQ dataset, we use the o�cial split.

CHAPTER 7. LEARNING GRADUAL IMAGE TRANSFORMATION 93

We compare our method with two baselines:

• CycleGAN [238] (iterative) – After using CycleGAN to learn the generator that trans-
forms images from domain A to domain B, we iteratively apply the generator to the
previous output to synthesize a sequence of transformations.

• Fader Networks [121] – A state-of-the-art method that aims to learn disentangled
semantic codes for continuous attribute manipulation.

For both baselines, we train the models on our datasets using the provided code online.

7.4.1 Qualitative results

We first demonstrate the e↵ectiveness of our method on several applications that require
synthesizing di↵erential transformations (for more results please refer to the supplementary
material).

Season progression We again use the transient attributes database, and choose “snow”
as the target domain. As shown in Figure 7.2 (top), our method successfully learns to syn-
thesize snow coverage and change lighting in the scene to be more and more characteristic
of winter.

Time-of-day progression We show that our method can synthesize the e↵ect of sunset
progression from a single image. We train our model on the transient attributes dataset using
the “sunrise / sunset” label. As shown in Figure 7.2 (middle), our method is able to syn-
thesize the sunset progression from a single image with realistic and smooth lighting changes.

Facial attribute manipulation We apply our method to the CelebA-HQ [101] dataset
for manipulating three facial attributes: “smile”, “young” and “mustache”. As shown in
Figure 7.2 (bottom), our method is able to synthesize realistic facial attribute changes.

7.4.2 Qualitative comparison with the baselines

CycleGAN (iterative) As shown in Figure 7.3, since CycleGAN is designed to directly
map images from the source domain to the target, it is not able to synthesize realistic and
smooth progression even if applied iteratively on the output from the previous step. Notice
that the output image falls o↵ the natural image manifold much more quickly than ours.
Fader Networks We show comparison with Fader Networks in Figure 7.4. Our method
tends to produce sharper and more realistic details than Fader Networks, which suggests that
modeling the full space of transformations using a small latent code representation might
cause loss of visual details from the input image, and formulating the problem as image-
to-image translation might be more desirable for producing results with high perceptual
quality.

CHAPTER 7. LEARNING GRADUAL IMAGE TRANSFORMATION 94

Figure 7.2: Qualitative results of our method. The leftmost column displays the input
images. Rows display iterative applications of the learned transformation toward various
target domains.

CHAPTER 7. LEARNING GRADUAL IMAGE TRANSFORMATION 95

Figure 7.3: Qualitative comparison between the CycleGAN (iterative) baseline and our
method. CycleGAN is trained to perform the full translation from source to target domain
in one step and multiple applications of the same translation either have no e↵ect or fall o↵
the image manifold. In contrast, our method successfully performs di↵erential changes to
images from multiple domains.

7.4.3 Evaluation of transformation consistency

For evaluating the consistency of di↵erential transformations induced by each method,
we utilize scores from a domain classifier. For each consecutive pair of frames Gt and Gt+1

in the synthesized sequence, they are deemed consistent if Gt+1 is closer to XB than Gt,
i.e. dist(Gt+1,XB) > dist(Gt,XB), where dist(·) is computed using the domain classifier
score. We compute the percentage of consistent pairs (PCP) as a measure of the overall
consistency among generated sequences. To alleviate bias, we do not use the same classifier
that defines the di↵erential loss in our method, but rather train a separate one with a di↵erent
architecture (ResNet-18 [73]) when evaluating PCP. Specifically, we fine-tune the ResNet-18
network pretrained on ImageNet with our datasets.

We compare the performance of our method with the baselines in Table 7.1. Our method
significantly outperforms the baselines in all scene-level transformations (“Snow”, “Sunny”
and “Sunset”), and two of the facial attribute variations (“Mustache” and “Young”). We
perform slightly worse than Fader Networks on “Smile”.

CHAPTER 7. LEARNING GRADUAL IMAGE TRANSFORMATION 96

Figure 7.4: Comparison of our method against FaderNetworks [121]. Top: Our method
generates more realistic progressions than FaderNetworks towards mustache and smile. Bot-
tom: The advantage of using direct image translation over working in a bottleneck-bound
embedding space becomes clear in high resolution. Our method preserves fine details while
FaderNetworks does not.

Snow Sunny Sunset Mustache Smile Young

CycleGAN (iterative) 0.756 0.620 0.645 0.557 0.556 0.741
Fader Networks 0.765 0.574 0.668 0.685 0.723 0.738
Ours 0.870 0.718 0.781 0.817 0.683 0.854

Table 7.1: Evaluating the transformation consistency for di↵erent methods with the PCP
metric (higher is better).

7.4.4 Evaluation of perceptual quality

To measure the overall quality and realism of the synthesized images, we conducted real
vs fake perceptual studies on Amazon Mechanical Turk.

Experimental setup. We followed the same experiment protocol from Zhang et al. [227].
Participants were shown a series of pairs of image sequences: one sequence was real time-
lapse photos and one sequence was fake photos (generated by our method or a baseline).
Participants were asked to click on the sequence they thought was real. Sequences of 7
images of resolution 192⇥ 192px (downsampled from 256⇥ 256px in order to fit the monitor
screen size) were shown for one second each, and after each pair, participants were given

CHAPTER 7. LEARNING GRADUAL IMAGE TRANSFORMATION 97

Method AMT labelled real (%)

FaderNetworks [121] 18.20
Ours 41.60

Table 7.2: Results of real vs. fake perceptual studies on day to sunset progression images
synthesized from the transient attributes dataset [119]. Our method produced images that
fool participants into thinking they are real more often than the baseline.

unlimited time to respond. We picked 200 input images at random and generated from them
a sequence of transformations using each condition. We used 20 real sequences in total that
did not start from the same input images as the condition sequences. Each task consisted
of 15 pairs of sequences and was performed by 3 di↵erent workers. Each worker was only
allowed to participate in one experiment. Workers were given a training set of 5 pairs of
sequences before the start of the task and were given feedback indicating whether they had
correctly identified the real time-lapse sequence in each training pair.

Using this experimental setup, we compared the results of our method with those of
Fader Networks [121] on the task of day to sunset progression on the transient attributes
images [119]. For each input image we synthesized a 7-step progression from daytime to
sunset using each of the methods in comparison.

We assess the quality of each method using the rate at which its output fooled the
participants. As shown in Table 7.2, our synthesized results were selected by participants
as more “real” than the original paired ground truth real sequence 41.60% of the time. In
comparison, the sequences synthesized by Fader Networks [121] fooled the participants only
18.20% of the time. One reason for this di↵erence may be that Fader Networks operates
in the embedding space while our method is able to do a direct translation from pixels to
pixels, thus preserving more high-frequency details from the original image.

7.4.5 Ablation studies

E↵ect of the saturation point We demonstrate how changing the value of ↵ (which
determines the saturation point in the di↵erential loss) a↵ects the network prediction in
Figure 7.5. As expected, larger ↵ results in larger di↵erential for each application of G, and
could lead to noticeable artifacts if it becomes too large. Meanwhile, if ↵ is too small, the
network is reluctant to change from the input image.
E↵ect of di↵erent loss terms We found that the content loss is helpful in preserving the
input identity and improving the perceptual quality of the results when undergoing iterative
transformations. The di↵erential loss is necessary for the generator to learn progressive
transformations. The adversarial loss is helpful in producing results with high perceptual
quality by keeping them on the natural image manifold. Please refer to the supplementary
material for more details.

CHAPTER 7. LEARNING GRADUAL IMAGE TRANSFORMATION 98

Figure 7.5: Left : Failure cases. (a) Repeated applications of G result in images that no
longer lie on the manifold of real images. (b) Smiling progression produces a toothy smile
on the hand instead of the mouth. A mustache is erroneously drawn on a woman. Right :
The e↵ect of changing the saturation point (determined by ↵) in the di↵erential loss. If ↵
is too small (top) predictions tend to be identical to the input. If ↵ is too large (bottom)
prediction become caricatures and fall o↵ the manifold of natural images.

7.4.6 Failure modes

Figure 7.5 displays several failure modes of our method. Most commonly, the GAN
loss may fail to keep the generated images on the manifold of natural images after many
applications of G. Additionally, G sometimes fails to modify the input image correctly. The
modification may be applied at the wrong spatial location (such as adding a smile on the
hand) or fail to perform high-level semantic reasoning and apply transformations where it is
not necessarily meaningful (e.g. adding mustache to women).

7.4.7 Additional results

Having demonstrated our method on standard tasks, we now show results on other prob-
lems that our di↵erential formulation allows us to easily tackle.

7.4.7.1 Painting animation

We show that our method, trained on the transient attributes dataset of natural images
as described in Section 7.4.1, can synthesize at test time progressions from a single image
taken from a completely di↵erent domain of artistic paintings. Figure 7.6 displays such
inferred progressions towards winter and towards sunset. Here our model generalizes despite
the fact that it was only trained to produce images from the natural image manifold.

CHAPTER 7. LEARNING GRADUAL IMAGE TRANSFORMATION 99

Figure 7.6: Progressions from a single painting using models that were trained on natural
images. Our method generalizes to a di↵erent domain despite the fact that it was only
trained to generate images from the natural image manifold.

Figure 7.7: Multi-domain season transformation. We use a photograph taken by a Flickr user
during the Summer at Central Park, NYC as input. We transform this image to Autumn
and then Winter by using the end point of one generated sequence (Summer to Autumn) as
the input to the next transformation (Autumn to Winter).

CHAPTER 7. LEARNING GRADUAL IMAGE TRANSFORMATION 100

7.4.7.2 Multi-domain transformations

We demonstrate that our method is able to transform smoothly between multiple
domains by using the end of a generated output sequence towards domain A as input to a
transformation towards domain B. Figure 7.7 shows such a concatenation of transformations
from Summer to Autumn to Winter.

This pair of transformations was trained on Flickr images taken between 2006 and 2015
in Central Park in Manhattan that were tagged with time stamps and GPS coordinates.
To separate the data into multiple season domains we trained 12-way month classifiers and
picked the top 5K images for each month based on prediction confidence. We split the
months of the year into season domains according to the o�cial season begin and end dates.
In order to obtain a clean set of images that are clearly representative of each season,
we filtered the set of images to only those which were correctly predicted to have been
taken in the corresponding season. We trained separate di↵erential translation models for
transitioning between each pair of consecutive seasons. Finally, we generated progressions
of multiple seasons by taking the output from one transformation as the input to the next
season transformation.

This demonstration is interesting for two reasons. First, we are able to concatenate
separately-trained transformations without leaving the natural image manifold. Second, our
method can successfully be trained on user-uploaded photographs from Flickr that are only
roughly geo-localized and does not require any alignment or special preprocessing of the data
between the two source and target domains.

7.5 Discussion

We have demonstrated that our method can learn realistic di↵erential transformations
from weak, domain-level supervision. Unlike most related methods, our method does not
use a low-dimensional latent embedding, which may allow it to more easily to model high-
dimensional outputs. Our work has several limitations. First, the types of transformations
that we are able to learn are mostly focused on changes in the appearance of the image,
with the scene geometry left largely untouched. We believe this is mainly an artifact of
the generator architecture being used. Second, repeated applications of our transformations
still may result in the synthesized images “drifting o↵” the natural image manifold. This
may be due to the optimization di�culty in balancing between the GAN and the di↵erential
objectives.

101

Chapter 8

Conclusions

This thesis investigated how to use deep learning for a variety of vision and graphics
tasks without requiring direct labeled data for training. For the task of dense semantic
correspondence, we use the concept of cycle consistency as the supervisory signal that allows
us to train the correspondence network on real images (where we don’t have direct labels)
by linking them to the synthetic images (where we do have direct labels). For learning depth
and ego-motion, we exploit the observation that if both quantities are estimated correctly,
they would be able to reconstruct the nearby views in the same video sequence (under
mild assumptions about scene motion and disocclusion). Therefore, using the task of view
synthesis as supervision, we are able to learn depth and ego-motion estimation from video
data without any direct labels. We further demonstrate that using the similar methodology,
we could train a deep network to recover a layered scene representation (i.e. multiplane
images) from narrow-baseline stereo pairs with supervision from the task of view synthesis.
Finally, we show that it is possible to uncover gradual transformations implicit in a collection
of static photos without direct labeled data.

Furthermore, we can view each learning methodology above as a specific instance of the
broader family of meta-supervison, where the supervision is not on what the output is but
how it should behave. We believe that meta-supervison could be quite e↵ective in other
domains too where large-scale direct labels are not available:

Intrinsic image decomposition Given a single image, the goal of intrinsic image decom-
position (IID) is to infer the confounding factors of reflectance and shading whose product
constitutes the luminance of the given image. While IID is a classic computer vision problem
with many important applications, it is by far largely unsolved even with the significant ad-
vancement of deep learning mainly due to the di�culty in obtaining ground-truth reflectance
and shading at scale to power learning-based methods. We believe that meta-supervision
could be the key ingredient for unlocking the success in this domain. One potential direction
is to utilize timelapse/webcam type of data, where we could use reflectance constancy as a
source for meta-supervision (along with other constraints like luminance reconstruction from
the product of reflectance and shading).

CHAPTER 8. CONCLUSIONS 102

Scene dynamics Estimating the dynamics of a scene (i.e. where and how the objects
move) is a challenging problem without a feasible mechanism for collecting labeled data
in real-world scenes. We are hopeful that a supervision methodology similar to the one
we described in Chapter 5 could be e↵ective in learning scene dynamics without requiring
direct ground-truth. Some recent works have shown promising results along this line of
research [220, 218, 162].

Building the visual memex Rich and interpretable understanding of the visual world
arguably requires explicit reasoning of object-object and object-scene relationships. One
way to approach this is to build a visual memex graph, with nodes being object/scene in-
stances (instead of categories) and edges representing di↵erent types of associations between
them, including spatial/semantic context, shared attributes, visual similarity, co-occurrence
statistics and many more. With a visual memex at a su�ciently large scale, computational
understanding of our visual world could become a walk on the graph that propagates infor-
mation for the downstream recognition tasks. However, building a scalable visual memex is
not trivial, and cannot rely on human annotations due to the exponential growth of the graph
size. We hypothesize that meta-supervision is a promising solution since some of the desired
properties of the memex (e.g. cycle consistency) could be formulated as objective functions
during the memex construction. In some sense, the FlowWeb representation described in
Chapter 2 can be viewed as a pixel-level memex, with nodes being pixels and edges being
their correspondences, which we hope could inspire future work on building a more general
visual memex.

103

Bibliography

[1] Mart́ın Abadi et al. “TensorFlow: A System for Large-Scale Machine Learning”. In:
OSDI. 2016.

[2] A.Dosovitskiy, J.T.Springenberg, and T.Brox. “Learning to Generate Chairs with
Convolutional Neural Networks”. In: IEEE International Conference on Computer
Vision and Pattern Recognition. 2015.

[3] Sameer Agarwal, Keir Mierle, et al. Ceres Solver. http://ceres-solver.org. 2016.

[4] Pulkit Agrawal, Joao Carreira, and Jitendra Malik. “Learning to See by Moving”. In:
ICCV. 2015.

[5] Apple. Portrait mode now available on iPhone 7 Plus with iOS 10.1. https://www.
apple.com/newsroom/2016/10/portrait-mode-now-available-on-iphone-7-

plus-with-ios-101/. 2016.

[6] Mathieu Aubry et al. “Seeing 3D Chairs: Exemplar Part-Based 2D-3D Alignment
Using a Large Dataset of CAD Models”. In: Proceedings of the 2014 IEEE Conference
on Computer Vision and Pattern Recognition. CVPR ’14. Washington, DC, USA:
IEEE Computer Society, 2014, pp. 3762–3769. isbn: 978-1-4799-5118-5. doi: 10.
1109/CVPR.2014.487. url: http://dx.doi.org/10.1109/CVPR.2014.487.

[7] Jimmy Lei Ba, Jamie Ryan Kiros, and Geo↵rey E Hinton. “Layer normalization”. In:
arXiv preprint arXiv:1607.06450 (2016).

[8] Connelly Barnes et al. “PatchMatch: A Randomized Correspondence Algorithm for
Structural Image Editing”. In: SIGGRAPH 28.3 (2009).

[9] Connelly Barnes et al. “PatchMatch: A randomized correspondence algorithm for
structural image editing”. In: ACM Transactions on Graphics (TOG) (2009).

[10] Connelly Barnes et al. “The Generalized PatchMatch Correspondence Algorithm”.
In: ECCV. 2010.

[11] James Bergen et al. “Hierarchical model-based motion estimation”. In: ECCV. Springer.
1992, pp. 237–252.

[12] Volker Blanz and Thomas Vetter. “A morphable model for the synthesis of 3D faces”.
In: SIGGRAPH. 1999, pp. 187–194.

BIBLIOGRAPHY 104

[13] Chris Buehler et al. “Unstructured lumigraph rendering”. In: Proceedings of the 28th
annual conference on Computer graphics and interactive techniques. ACM. 2001,
pp. 425–432.

[14] Daniel J Butler et al. “A naturalistic open source movie for optical flow evaluation”.
In: European Conference on Computer Vision. Springer. 2012, pp. 611–625.

[15] Zhe Cao et al. “Realtime multi-person 2d pose estimation using part a�nity fields”.
In: arXiv preprint arXiv:1611.08050 (2016).

[16] Joao Carreira et al. “Virtual View Networks for Object Reconstruction”. In: Computer
Vision and Pattern Recognition (CVPR), 2015 IEEE Conference on. IEEE. 2015.

[17] Angel X. Chang et al. ShapeNet: An Information-Rich 3D Model Repository. Tech.
rep. arXiv:1512.03012 [cs.GR]. Stanford University — Princeton University — Toyota
Technological Institute at Chicago, 2015.

[18] Angel X Chang et al. “Shapenet: An information-rich 3d model repository”. In: arXiv
preprint arXiv:1512.03012 (2015).

[19] Alexandre Chapiro et al. “Optimizing stereo-to-multiview conversion for autostereo-
scopic displays”. In: Computer graphics forum. 2014.

[20] Liang-Chieh Chen et al. “Deeplab: Semantic image segmentation with deep convolu-
tional nets, atrous convolution, and fully connected crfs”. In: IEEE transactions on
pattern analysis and machine intelligence 40.4 (2018), pp. 834–848.

[21] Qifeng Chen and Vladlen Koltun. “Photographic image synthesis with cascaded re-
finement networks”. In: ICCV. 2017.

[22] Shenchang Eric Chen and Lance Williams. “View Interpolation for Image Synthesis”.
In: Proc. SIGGRAPH. 1993.

[23] Tao Chen et al. “3-sweep: Extracting editable objects from a single photo”. In: ACM
Transactions on Graphics (TOG) (2013).

[24] Xianjie Chen et al. “Detect What You Can: Detecting and Representing Objects
using Holistic Models and Body Parts”. In: IEEE Conference on Computer Vision
and Pattern Recognition (CVPR). 2014.

[25] Xinlei Chen, Abhinav Shrivastava, and Abhinav Gupta. “NEIL: Extracting Visual
Knowledge from Web Data”. In: ICCV. 2013.

[26] Brian Cheung et al. “Discovering hidden factors of variation in deep networks”. In:
arXiv preprint arXiv:1412.6583 (2014).

[27] Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. “Fast and Accurate
Deep Network Learning by Exponential Linear Units (ELUs)”. In: CoRR abs/1511.07289
(2015). arXiv: 1511.07289. url: http://arxiv.org/abs/1511.07289.

[28] Timothy F Cootes, Gareth J Edwards, Christopher J Taylor, et al. “Active appearance
models”. In: TPAMI 23.6 (2001), pp. 681–685.

BIBLIOGRAPHY 105

[29] Marius Cordts et al. “The Cityscapes Dataset for Semantic Urban Scene Understand-
ing”. In: CVPR. 2016.

[30] Navneet Dalal and Bill Triggs. “Histograms of oriented gradients for human detec-
tion”. In: Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Com-
puter Society Conference on. IEEE. 2005.

[31] Navneet Dalal and Bill Triggs. “Histograms of oriented gradients for human detec-
tion”. In: IEEE Conference on Computer Vision and Pattern Recognition. 2005.

[32] Paul E Debevec, Camillo J Taylor, and Jitendra Malik. “Modeling and rendering
architecture from photographs: A hybrid geometry-and image-based approach”. In:
Proc. SIGGRAPH. 1996.

[33] Piotr Didyk et al. “Joint view expansion and filtering for automultiscopic 3D dis-
plays”. In: Proc. SIGGRAPH. 2013.

[34] Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. “Density estimation using
Real NVP”. In: arXiv preprint arXiv:1605.08803 (2016).

[35] Carl Doersch et al. “What makes Paris look like Paris?” In: SIGGRAPH 31.4 (2012),
p. 101.

[36] Alexey Dosovitskiy and Thomas Brox. “Generating images with perceptual similarity
metrics based on deep networks”. In: NIPS. 2016.

[37] Alexey Dosovitskiy et al. “CARLA: An Open Urban Driving Simulator”. In: Proceed-
ings of the 1st Annual Conference on Robot Learning. 2017, pp. 1–16.

[38] Alexei A Efros and William T Freeman. “Image quilting for texture synthesis and
transfer”. In: ACM. 2001, pp. 341–346.

[39] Alexei A Efros and Thomas K Leung. “Texture synthesis by non-parametric sam-
pling”. In: ICCV. Vol. 2. IEEE. 1999, pp. 1033–1038.

[40] David Eigen, Christian Puhrsch, and Rob Fergus. “Depth Map Prediction from a
Single Image using a Multi-Scale Deep Network”. In: NIPS. 2014.

[41] Jakob Engel, Vladlen Koltun, and Daniel Cremers. “Direct sparse odometry”. In:
IEEE Trans. on Pattern Analysis and Machine Intelligence 40.3 (2018).

[42] M. Everingham et al. The PASCAL Visual Object Classes Challenge 2012 (VOC2012)
Results. http://www.pascal-network.org/challenges/VOC/voc2012/workshop/index.html.

[43] Alon Faktor and Michal Irani. ““Clustering by Composition”–Unsupervised Discovery
of Image Categories”. In: ECCV. 2012.

[44] Christoph Fehn. “Depth-image-based rendering (DIBR), compression, and transmis-
sion for a new approach on 3D-TV”. In: Electronic Imaging 2004. International Society
for Optics and Photonics. 2004, pp. 93–104.

[45] Philipp Fischer et al. “FlowNet: Learning Optical Flow with Convolutional Net-
works”. In: ICCV. 2015.

BIBLIOGRAPHY 106

[46] Andrew Fitzgibbon, YonatanWexler, and Andrew Zisserman. “Image-based rendering
using image-based priors”. In: IJCV 63.2 (2005), pp. 141–151.

[47] John Flynn et al. “DeepStereo: Learning to Predict New Views From the World’s
Imagery”. In: CVPR. 2016.

[48] John Flynn et al. “DeepStereo: Learning to Predict New Views from the World’s
Imagery”. In: IEEE Conference on Computer Vision and Pattern Recognition. 2016.

[49] Christian Forster, Matia Pizzoli, and Davide Scaramuzza. “SVO: Fast Semi-Direct
Monocular Visual Odometry”. In: ICRA. 2014.

[50] David F Fouhey et al. “Single image 3D without a single 3D image”. In: Proceedings
of the IEEE International Conference on Computer Vision. 2015, pp. 1053–1061.

[51] Kunihiko Fukushima. “Neocognitron: A Self-Organizing Neural Network Model for
a Mechanism of Pattern Recognition Una↵ected by Shift in Position”. In: Biological
Cybernetics (1980).

[52] Yasutaka Furukawa and Carlos Hernández. “Multi-view stereo: A tutorial”. In: Foun-
dations and Trends R� in Computer Graphics and Vision 9 (2015).

[53] Yasutaka Furukawa et al. “Towards internet-scale multi-view stereo”. In: CVPR.
IEEE. 2010, pp. 1434–1441.

[54] Matheus Gadelha, Subhransu Maji, and Rui Wang. “3D Shape Induction from 2D
Views of Multiple Objects”. In: arXiv preprint arXiv:1612.05872 (2016).

[55] Ravi Garg et al. “Unsupervised CNN for Single View Depth Estimation: Geometry
to the Rescue”. In: ECCV. 2016.

[56] Leon A Gatys, Alexander S Ecker, and Matthias Bethge. “Image Style Transfer Using
Convolutional Neural Networks”. In: CVPR (2016).

[57] Andreas Geiger, Philip Lenz, and Raquel Urtasun. “Are we ready for autonomous
driving? The KITTI vision benchmark suite”. In: Computer Vision and Pattern
Recognition (CVPR), 2012 IEEE Conference on. IEEE. 2012, pp. 3354–3361.

[58] Ross Girshick et al. “Rich feature hierarchies for accurate object detection and se-
mantic segmentation”. In: CVPR. 2014.

[59] Clément Godard, Oisin Mac Aodha, and Gabriel J. Brostow. “Unsupervised Monoc-
ular Depth Estimation with Left-Right Consistency”. In: CVPR. 2017.

[60] Ian Goodfellow et al. “Generative adversarial nets”. In: NIPS. 2014.

[61] Google. Introducing VR180 cameras. https://vr.google.com/vr180/. 2017.

[62] Google. Portrait mode on the Pixel 2 and Pixel 2 XL smartphones. https://research.
googleblog.com/2017/10/portrait-mode-on-pixel-2-and-pixel-2-xl.html.
2017.

BIBLIOGRAPHY 107

[63] Ross Goroshin et al. “Unsupervised learning of spatiotemporally coherent metrics”.
In: Proceedings of the IEEE International Conference on Computer Vision. 2015,
pp. 4086–4093.

[64] Steven J. Gortler et al. “The Lumigraph”. In: Proc. SIGGRAPH. 1996.

[65] Rıza Alp Güler, Natalia Neverova, and Iasonas Kokkinos. “Densepose: Dense human
pose estimation in the wild”. In: arXiv preprint arXiv:1802.00434 (2018).

[66] Saurabh Gupta et al. “Aligning 3D Models to RGB-D Images of Cluttered Scenes”.
In: Computer Vision and Pattern Recognition (CVPR). 2015.

[67] Hyowon Ha et al. “High-quality Depth from Uncalibrated Small Motion Clip”. In:
CVPR. 2016.

[68] Yoav HaCohen et al. “Optimizing Color Consistency in Photo Collections”. In: SIG-
GRAPH 32.4 (2013), 85:1–85:9.

[69] Xufeng Han et al. “MatchNet: Unifying feature and metric learning for patch-based
matching”. In: CVPR. 2015, pp. 3279–3286.

[70] Ankur Handa et al. “gvnn: Neural Network Library for Geometric Computer Vision”.
In: arXiv preprint arXiv:1607.07405 (2016).

[71] Richard Hartley and Andrew Zisserman. Multiple View Geometry in Computer Vi-
sion. Cambridge University Press, 2003.

[72] Samuel W. Hasino↵ et al. “Burst photography for high dynamic range and low-light
imaging on mobile cameras”. In: Proc. SIGGRAPH Asia. 2016.

[73] Kaiming He et al. “Deep residual learning for image recognition”. In: Proceedings of
the IEEE conference on computer vision and pattern recognition. 2016, pp. 770–778.

[74] Kaiming He et al. “Mask r-cnn”. In: Computer Vision (ICCV), 2017 IEEE Interna-
tional Conference on. IEEE. 2017, pp. 2980–2988.

[75] Mingming He et al. “Neural Color Transfer between Images”. In: arXiv preprint
arXiv:1710.00756 (2017).

[76] Kyle Heath et al. “Image webs: Computing and exploiting connectivity in image
collections.” In: CVPR. 2010.

[77] Peter Hedman et al. “Casual 3D Photography”. In: Proc. SIGGRAPH Asia. 2017.

[78] Aaron Hertzmann et al. “Image analogies”. In: ACM. 2001, pp. 327–340.

[79] Geo↵rey E Hinton, Alex Krizhevsky, and Sida DWang. “Transforming auto-encoders”.
In: Artificial Neural Networks and Machine Learning–ICANN. 2011.

[80] Derek Hoiem, Alexei A. Efros, and Martial Hebert. “Automatic Photo Pop-up”. In:
2005.

[81] Derek Hoiem, Alexei A Efros, and Martial Hebert. “Automatic photo pop-up”. In:
ACM transactions on graphics (TOG) (2005).

BIBLIOGRAPHY 108

[82] Michael Holroyd et al. “Computing and fabricating multilayer models”. In: Proc.
SIGGRAPH Asia. 2011.

[83] Youichi Horry, Ken-Ichi Anjyo, and Kiyoshi Arai. “Tour into the picture: using a
spidery mesh interface to make animation from a single image”. In: Proceedings of
the 24th annual conference on Computer graphics and interactive techniques. 1997.

[84] Gary B. Huang, Vidit Jain, and Erik Learned-Miller. “Unsupervised Joint Alignment
of Complex Images”. In: ICCV. 2007.

[85] Q. Huang and L. Guibas. “Consistent Shape Maps via Semidefinite Programming”.
In: SGP. 2013.

[86] Qixing Huang, Hai Wang, and Vladlen Koltun. “Single-view reconstruction via joint
analysis of image and shape collections”. In: ACM Trans. Graph. 34.4 (2015), p. 87.
doi: 10.1145/2766890. url: http://doi.acm.org/10.1145/2766890.

[87] Qi-Xing Huang and Leonidas Guibas. “Consistent shape maps via semidefinite pro-
gramming”. In: Computer Graphics Forum 32.5 (2013), pp. 177–186.

[88] Aapo Hyvärinen, Juha Karhunen, and Erkki Oja. Independent component analysis.
Vol. 46. John Wiley & Sons, 2004.

[89] Sergey Io↵e and Christian Szegedy. “Batch normalization: Accelerating deep network
training by reducing internal covariate shift”. In: 2015.

[90] Michal Irani and P Anandan. “About direct methods”. In: International Workshop
on Vision Algorithms. Springer. 1999, pp. 267–277.

[91] Phillip Isola et al. “Image-to-Image Translation with Conditional Adversarial Net-
works”. In: CVPR (2017).

[92] Max Jaderberg et al. “Spatial Transformer Networks”. In: NIPS. 2015.

[93] Max Jaderberg, Karen Simonyan, Andrew Zisserman, et al. “Spatial transformer net-
works”. In: Advances in Neural Information Processing Systems. 2015.

[94] D. Jayaraman and K. Grauman. “Learning image representations tied to egomotion”.
In: IEEE International Conference on Computer Vision. 2015.

[95] Dinesh Jayaraman and Kristen Grauman. “Learning image representations tied to
ego-motion”. In: ICCV. 2015.

[96] Yangqing Jia et al. “Ca↵e: Convolutional Architecture for Fast Feature Embedding”.
In: arXiv preprint arXiv:1408.5093 (2014).

[97] Justin Johnson, Alexandre Alahi, and Li Fei-Fei. “Perceptual losses for real-time style
transfer and super-resolution”. In: ECCV. 2016.

[98] Nebojsa Jojic, Brendan J Frey, and Anitha Kannan. “Epitomic analysis of appearance
and shape”. In: IEEE International Conference on Computer Vision. 2003.

[99] Ian Jolli↵e. Principal component analysis. Wiley Online Library, 2002.

BIBLIOGRAPHY 109

[100] Nima Khademi Kalantari, Ting-Chun Wang, and Ravi Ramamoorthi. “Learning-
Based View Synthesis for Light Field Cameras”. In: Proc. SIGGRAPH Asia. 2016.

[101] Tero Karras et al. “Progressive growing of GANs for improved quality, stability, and
variation”. In: ICLR. 2018.

[102] Kevin Karsch, Ce Liu, and Sing Bing Kang. “Depth transfer: Depth extraction from
video using non-parametric sampling”. In: IEEE transactions on pattern analysis and
machine intelligence 36.11 (2014), pp. 2144–2158.

[103] Petr Kellnhofer et al. “3DTV at Home: Eulerian-Lagrangian Stereo-to-Multiview Con-
version”. In: Proc. SIGGRAPH. 2017.

[104] Ira Kemelmacher-Shlizerman and Steve Seitz. “Collection flow”. In: CVPR. 2012.

[105] Ira Kemelmacher-Shlizerman and Steven M Seitz. “Face reconstruction in the wild”.
In: ICCV. 2011.

[106] Ira Kemelmacher-Shlizerman et al. “Exploring photobios”. In: SIGGRAPH 30.4 (2011),
p. 61.

[107] Alex Kendall, Matthew Grimes, and Roberto Cipolla. “PoseNet: A convolutional
network for real-time 6-DOF camera relocalization”. In: ICCV. 2015, pp. 2938–2946.

[108] Alex Kendall et al. “End-to-End Learning of Geometry and Context for Deep Stereo
Regression”. In: arXiv preprint arXiv:1703.04309 (2017).

[109] Natasha Kholgade et al. “3d object manipulation in a single photograph using stock
3d models”. In: ACM Transactions on Graphics (TOG) (2014).

[110] Jaechul Kim et al. “Deformable Spatial Pyramid Matching for Fast Dense Correspon-
dences”. In: CVPR. 2013.

[111] Taeksoo Kim et al. “Learning to Discover Cross-Domain Relations with Generative
Adversarial Networks”. In: ICML. 2017.

[112] Taeksoo Kim et al. “Learning to discover cross-domain relations with generative ad-
versarial networks”. In: arXiv preprint arXiv:1703.05192 (2017).

[113] Diederik P Kingma and Max Welling. “Auto-encoding variational bayes”. In: (2014).

[114] Diederik Kingma and Jimmy Ba. “Adam: A method for stochastic optimization”. In:
arXiv preprint arXiv:1412.6980 (2014).

[115] Philipp Krähenbühl and Vladlen Koltun. E�cient Inference in Fully Connected CRFs
with Gaussian Edge Potentials. NIPS, 2011.

[116] Alex Krizhevsky, Ilya Sutskever, and Geo↵rey E Hinton. “Imagenet classification with
deep convolutional neural networks”. In: Advances in neural information processing
systems. 2012, pp. 1097–1105.

[117] Tejas D Kulkarni et al. “Deep Convolutional Inverse Graphics Network”. In: NIPS.
2015.

BIBLIOGRAPHY 110

[118] Yevhen Kuznietsov, Jörg Stückler, and Bastian Leibe. “Semi-Supervised Deep Learn-
ing for Monocular Depth Map Prediction”. In: arXiv preprint arXiv:1702.02706 (2017).

[119] Pierre-Yves La↵ont et al. “Transient attributes for high-level understanding and edit-
ing of outdoor scenes”. In: ACM Transactions on Graphics (TOG) 33.4 (2014), p. 149.

[120] Iro Laina et al. “Deeper depth prediction with fully convolutional residual networks”.
In: 3D Vision (3DV), 2016 Fourth International Conference on. IEEE. 2016, pp. 239–
248.

[121] Guillaume Lample et al. “Fader Networks: Manipulating Images by Sliding Attributes”.
In: CoRR abs/1706.00409 (2017). arXiv: 1706.00409. url: http://arxiv.org/abs/
1706.00409.

[122] Erik Learned-Miller. “Data Driven Image Models through Continuous Joint Align-
ment”. In: TPAMI 28.2 (2005), pp. 236–250.

[123] Yang LeCun et al. “Backpropagation applied to hand-written zip code recognition”.
In: Neural Computation. 1989.

[124] Y. J. Lee and K. Grauman. “Collect-Cut: Segmentation with Top-Down Cues Dis-
covered in Multi-Object Images”. In: CVPR. 2010.

[125] Marc Levoy and Pat Hanrahan. “Light Field Rendering”. In: Proc. SIGGRAPH. 1996.

[126] Marc Levoy and Pat Hanrahan. “Light field rendering”. In: Proceedings of the 23rd an-
nual conference on Computer graphics and interactive techniques. ACM. 1996, pp. 31–
42.

[127] Jing Liao et al. “Visual attribute transfer through deep image analogy”. In: arXiv
preprint arXiv:1705.01088 (2017).

[128] Tsung-Yi Lin et al. “Microsoft coco: Common objects in context”. In: European con-
ference on computer vision. Springer. 2014, pp. 740–755.

[129] Ce Liu, Jenny Yuen, and Antonio Torralba. “SIFT Flow: Dense Correspondence across
Scenes and Its Applications.” In: TPAMI 33.5 (2011), pp. 978–994.

[130] Fayao Liu et al. “Learning depth from single monocular images using deep convolu-
tional neural fields”. In: IEEE transactions on pattern analysis and machine intelli-
gence 38.10 (2016), pp. 2024–2039.

[131] Miaomiao Liu, Mathieu Salzmann, and Xuming He. “Discrete-continuous depth esti-
mation from a single image”. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. 2014, pp. 716–723.

[132] Ming-Yu Liu, Thomas Breuel, and Jan Kautz. “Unsupervised image-to-image transla-
tion networks”. In: Advances in Neural Information Processing Systems. 2017, pp. 700–
708.

[133] Ziwei Liu et al. “Deep Learning Face Attributes in the Wild”. In: Proceedings of
International Conference on Computer Vision (ICCV). Dec. 2015.

BIBLIOGRAPHY 111

[134] Ziwei Liu et al. “Video Frame Synthesis Using Deep Voxel Flow”. In: ICCV. 2017.

[135] Jonathan L Long, Ning Zhang, and Trevor Darrell. “Do Convnets Learn Correspon-
dence?” In: Advances in Neural Information Processing Systems. 2014, pp. 1601–1609.

[136] Jonathan Long, Evan Shelhamer, and Trevor Darrell. “Fully convolutional networks
for semantic segmentation”. In: CVPR. 2015, pp. 3431–3440.

[137] Matthew M Loper and Michael J Black. “OpenDR: An approximate di↵erentiable
renderer”. In: ECCV. Springer. 2014, pp. 154–169.

[138] Yin Lou, Noah Snavely, and Johannes Gehrke. “MatchMiner: E�cient Spanning
Structure Mining in Large Image Collections”. In: ECCV. 2012.

[139] David G Lowe. “Distinctive image features from scale-invariant keypoints”. In: Inter-
national journal of computer vision 60.2 (2004), pp. 91–110.

[140] Fujun Luan et al. “Deep photo style transfer”. In: CoRR, abs/1703.07511 (2017).

[141] Lytro. Lytro. https://www.lytro.com/. 2018.

[142] Tomasz Malisiewicz and Alexei A. Efros. “Beyond Categories: The Visual Memex
Model for Reasoning About Object Relationships”. In: NIPS. 2009.

[143] Xudong Mao et al. “Multi-class Generative Adversarial Networks with the L2 Loss
Function”. In: arXiv preprint arXiv:1611.04076 (2016).

[144] Michael Mathieu, Camille Couprie, and Yann LeCun. “Deep multi-scale video pre-
diction beyond mean square error”. In: ICLR (2016).

[145] Iain Matthews and Simon Baker. “Active appearance models revisited”. In: IJCV
60.2 (2004), pp. 135–164.

[146] Nikolaus Mayer et al. “A large dataset to train convolutional networks for disparity,
optical flow, and scene flow estimation”. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition. 2016, pp. 4040–4048.

[147] Xu Miao and Rajesh P. N. Rao. “Learning the Lie Groups of Visual Invariance”. In:
Neural Computation (2007).

[148] Ishan Misra, C Lawrence Zitnick, and Martial Hebert. “Shu✏e and learn: unsuper-
vised learning using temporal order verification”. In: European Conference on Com-
puter Vision. Springer. 2016, pp. 527–544.

[149] Hossein Mobahi, Ce Liu, and William T. Freeman. “A Compositional Model for Low-
Dimensional Image Set Representation”. In: CVPR. 2014.

[150] Raul Mur-Artal, Jose Maria Martinez Montiel, and Juan D Tardos. “ORB-SLAM: a
versatile and accurate monocular SLAM system”. In: IEEE Transactions on Robotics
31.5 (2015).

[151] Raul Mur-Artal, Jose Maria Martinez Montiel, and Juan D Tardos. “ORB-SLAM: a
versatile and accurate monocular SLAM system”. In: IEEE Transactions on Robotics
31.5 (2015), pp. 1147–1163.

BIBLIOGRAPHY 112

[152] Richard A Newcombe, Steven J Lovegrove, and Andrew J Davison. “DTAM: Dense
tracking and mapping in real-time”. In: ICCV. IEEE. 2011, pp. 2320–2327.

[153] A. Nguyen et al. “An optimization approach to improving collections of shape maps”.
In: SGP. 2011.

[154] Byong Mok Oh et al. “Image-based modeling and photo editing”. In: Proceedings of
the 28th annual conference on Computer graphics and interactive techniques. 2001.

[155] Deepak Pathak et al. “Learning Features by Watching Objects Move”. In: CVPR.
2017.

[156] Xingchao Peng et al. “Learning Deep Object Detectors from 3D Models”. In: Pro-
ceedings of the IEEE International Conference on Computer Vision. 2015, pp. 1278–
1286.

[157] Yigang Peng et al. “RASL: Robust Alignment by Sparse and Low-rank Decomposition
for Linearly Correlated Images”. In: TPAMI 34.11 (Nov. 2012).

[158] Eric Penner and Li Zhang. “Soft 3D Reconstruction for View Synthesis”. In: Proc.
SIGGRAPH Asia. 2017.

[159] Guim Perarnau et al. “Invertible Conditional GANs for image editing”. In: NIPS
Workshop on Adversarial Training. 2016.

[160] Thomas Porter and Tom Du↵. “Compositing Digital Images”. In: Proc. SIGGRAPH.
1984.

[161] René Ranftl et al. “Dense monocular depth estimation in complex dynamic scenes”.
In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
2016, pp. 4058–4066.

[162] Anurag Ranjan et al. “Adversarial Collaboration: Joint Unsupervised Learning of
Depth, Camera Motion, Optical Flow and Motion Segmentation”. In: arXiv preprint
arXiv:1805.09806 (2018).

[163] Konstantinos Rematas et al. “Novel Views of Objects from a Single Image”. In: arXiv
preprint arXiv:1602.00328 (2015).

[164] Shaoqing Ren et al. “Faster r-cnn: Towards real-time object detection with region
proposal networks”. In: Advances in neural information processing systems. 2015,
pp. 91–99.

[165] Jerome Revaud et al. “EpicFlow: Edge-preserving interpolation of correspondences
for optical flow”. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition. 2015.

[166] Danilo Jimenez Rezende et al. “Unsupervised learning of 3d structure from images”.
In: Advances In Neural Information Processing Systems. 2016, pp. 4997–5005.

[167] Stephan R Richter, Zeeshan Hayder, and Vladlen Koltun. “Playing for benchmarks”.
In: International conference on computer vision (ICCV). Vol. 2. 2017.

BIBLIOGRAPHY 113

[168] Christian Riechert et al. “Fully automatic stereo-to-multiview conversion in autostereo-
scopic displays”. In: The Best of IET and IBC 4 (Sept. 2012).

[169] Sam T Roweis and Lawrence K Saul. “Nonlinear dimensionality reduction by locally
linear embedding”. In: science 290.5500 (2000), pp. 2323–2326.

[170] M. Rubinstein et al. “Unsupervised Joint Object Discovery and Segmentation in
Internet Images”. In: CVPR. 2013.

[171] Olga Russakovsky et al. “Imagenet large scale visual recognition challenge”. In: IJCV
115.3 (2015), pp. 211–252.

[172] Aswin C. Sankaranarayanan et al. “Go with the Flow: Optical Flow-based Transport
Operators for Image Manifolds”. In: Annual Allerton Conference on Communication,
Control, and Computing. 2011.

[173] Ashutosh Saxena, Min Sun, and Andrew Y. Ng. “Make3D: Learning 3D Scene Struc-
ture from a Single Still Image”. In: TPAMI 31.5 (May 2009), pp. 824–840.

[174] Johannes Lutz Schönberger and Jan-Michael Frahm. “Structure-from-Motion Revis-
ited”. In: CVPR. 2016.

[175] Steven M Seitz and Charles R Dyer. “View morphing”. In: Proceedings of the 23rd an-
nual conference on Computer graphics and interactive techniques. ACM. 1996, pp. 21–
30.

[176] Jonathan Shade et al. “Layered depth images”. In: Proc. SIGGRAPH. 1998.

[177] ShapeNet. http://www.shapenet.org.

[178] Roger N. Shepard and Jacqueline Metzler. “Mental Rotation of Three-Dimensional
Objects”. In: Science (1971).

[179] Yichang Shih et al. “Data-driven hallucination of di↵erent times of day from a single
outdoor photo”. In: ACM Transactions on Graphics (TOG) 32.6 (2013), p. 200.

[180] Karen Simonyan and Andrew Zisserman. “Very deep convolutional networks for large-
scale image recognition”. In: arXiv preprint arXiv:1409.1556 (2014).

[181] Shuran Song and Jianxiong Xiao. “Deep Sliding Shapes for Amodal 3D Object De-
tection in RGB-D Images”. In: CVPR. 2016.

[182] Pratul P. Srinivasan et al. “Learning to Synthesize a 4D RGBD Light Field from a
Single Image”. In: ICCV. 2017.

[183] Hao Su et al. “3D-Assisted Image Feature Synthesis for Novel Views of an Object”.
In: International Conference on Computer Vision. 2015.

[184] Hao Su et al. “Estimating Image Depth Using Shape Collections”. In: Transactions
on Graphics (Special issue of SIGGRAPH 2014) (2014).

[185] Richard Szeliski. “Prediction error as a quality metric for motion and stereo”. In:
ICCV. Vol. 2. IEEE. 1999, pp. 781–788.

BIBLIOGRAPHY 114

[186] Yaniv Taigman, Adam Polyak, and Lior Wolf. “Unsupervised Cross-Domain Image
Generation”. In: arXiv preprint arXiv:1611.02200 (2016).

[187] Maxim Tatarchenko, Alexey Dosovitskiy, and Thomas Brox. “Multi-view 3d mod-
els from single images with a convolutional network”. In: European Conference on
Computer Vision. Springer. 2016, pp. 322–337.

[188] Maxim Tatarchenko, Alexey Dosovitskiy, and Thomas Brox. “Single-view to Multi-
view: Reconstructing Unseen Views with a Convolutional Network”. In: arXiv preprint
arXiv:1511.06702 (2015).

[189] Joshua B Tenenbaum, Vin De Silva, and John C Langford. “A global geometric
framework for nonlinear dimensionality reduction”. In: Science ().

[190] Antonio Torralba. http://people.csail.mit.edu/torralba/gallery/. 2001. url: http://
people.csail.mit.edu/torralba/gallery/.

[191] Shubham Tulsiani et al. “Multi-view Supervision for Single-view Reconstruction via
Di↵erentiable Ray Consistency”. In: CVPR. 2017.

[192] G. Tzimiropoulos and M. Pantic. “Optimization problems for fast AAM fitting in-
the-wild”. In: ICCV. 2013.

[193] Dmitry Ulyanov et al. “Texture networks: Feed-forward synthesis of textures and
stylized images”. In: Int. Conf. on Machine Learning (ICML). 2016.

[194] Benjamin Ummenhofer et al. “DeMoN: Depth and Motion Network for Learning
Monocular Stereo”. In: arXiv preprint arXiv:1612.02401 (2016).

[195] Paul Upchurch et al. “Deep feature interpolation for image content changes”. In:
arXiv preprint arXiv:1611.05507 (2016).

[196] Sara Vicente et al. “Reconstructing PASCAL VOC”. In: CVPR. 2014.

[197] Sudheendra Vijayanarasimhan et al. “SfM-Net: Learning of Structure and Motion
from Video”. In: arXiv preprint (2017).

[198] Carl Vondrick, Hamed Pirsiavash, and Antonio Torralba. “Generating Videos with
Scene Dynamics”. In: Advances in Neural Information Processing Systems 29. Ed. by
D. D. Lee et al. Curran Associates, Inc., 2016, pp. 613–621. url: http://papers.
nips.cc/paper/6194-generating-videos-with-scene-dynamics.pdf.

[199] F. Wang, Q. Huang, and L. Guibas. “Image Co-Segmentation via Consistent Func-
tional Maps Image Co-Segmentation via Consistent Functional Maps”. In: ICCV.
2013.

[200] F. Wang et al. “Unsupervised Multi-Class Joint Image Segmentation”. In: CVPR.
2014.

[201] John YA Wang and Edward H Adelson. “Representing moving images with layers”.
In: IEEE Trans. on Image Processing 3.5 (1994).

BIBLIOGRAPHY 115

[202] Xiaolong Wang and Abhinav Gupta. “Unsupervised learning of visual representations
using videos”. In: Proceedings of the IEEE International Conference on Computer
Vision. 2015, pp. 2794–2802.

[203] Zhou Wang et al. “Image quality assessment: from error visibility to structural simi-
larity”. In: IEEE Transactions on Image Processing 13.4 (2004), pp. 600–612.

[204] Sven Wanner, Stephan Meister, and Bastian Goldluecke. “Datasets and benchmarks
for densely sampled 4d light fields”. In: VMV. 2013.

[205] Philippe Weinzaepfel et al. “Deepflow: Large displacement optical flow with deep
matching”. In: Proceedings of the IEEE International Conference on Computer Vi-
sion. 2013.

[206] G. Wetzstein et al. “Layered 3D: Tomographic Image Synthesis for Attenuation-based
Light Field and High Dynamic Range Displays”. In: Proc. SIGGRAPH. 2011.

[207] Wikipedia. Multiplane camera. https://en.wikipedia.org/wiki/Multiplane_
camera. 2017.

[208] K. Wilson and N. Snavely. “Network Principles for SfM: Disambiguating Repeated
Structures with Local Context”. In: ICCV. 2013.

[209] John Wright et al. “Robust Principal Component Analysis: Exact Recovery of Cor-
rupted Low-Rank Matrices via Convex Optimization”. In: NIPS. 2009.

[210] Changchang Wu. VisualSFM: A visual structure from motion system. 2011.

[211] Zhirong Wu et al. “3D ShapeNets: A Deep Representation for Volumetric Shape
Modeling”. In: CVPR. 2015.

[212] Yu Xiang, Roozbeh Mottaghi, and Silvio Savarese. “Beyond PASCAL: A Benchmark
for 3D Object Detection in the Wild”. In: WACV. 2014.

[213] Junyuan Xie, Ross B. Girshick, and Ali Farhadi. “Deep3D: Fully Automatic 2D-to-3D
Video Conversion with Deep Convolutional Neural Networks”. In: ECCV. 2016.

[214] Xinchen Yan et al. “Attribute2Image: Conditional Image Generation from Visual
Attributes”. In: arXiv preprint arXiv:1512.00570 (2015).

[215] Xinchen Yan et al. “Perspective transformer nets: Learning single-view 3d object re-
construction without 3d supervision”. In: Advances in Neural Information Processing
Systems. 2016, pp. 1696–1704.

[216] Jimei Yang et al. “Weakly-supervised Disentangling with Recurrent Transformations
for 3D View Synthesis”. In: NIPS. 2015.

[217] Yi Yang and Deva Ramanan. “Articulated human detection with flexible mixtures of
parts”. In: Pattern Analysis and Machine Intelligence, IEEE Transactions on 35.12
(2013), pp. 2878–2890.

[218] Zhenheng Yang et al. “Every Pixel Counts: Unsupervised Geometry Learning with
Holistic 3D Motion Understanding”. In: arXiv preprint arXiv:1806.10556 (2018).

BIBLIOGRAPHY 116

[219] Zili Yi, Hao Zhang, Ping Tan Gong, et al. “DualGAN: Unsupervised Dual Learning
for Image-to-Image Translation”. In: arXiv preprint arXiv:1704.02510 (2017).

[220] Zhichao Yin and Jianping Shi. “GeoNet: Unsupervised Learning of Dense Depth,
Optical Flow and Camera Pose”. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR). Vol. 2. 2018.

[221] Fisher Yu and David Gallup. “3D Reconstruction from Accidental Motion”. In: CVPR.
2014.

[222] Fisher Yu and Vladlen Koltun. “Multi-Scale Context Aggregation by Dilated Convo-
lutions”. In: ICLR. 2016.

[223] Christopher Zach, Manfred Klopschitz, and Manfred Pollefeys. “Disambiguating vi-
sual relations using loop constraints.” In: CVPR. 2010.

[224] Jure Zbontar and Yann LeCun. “Stereo matching by training a convolutional neural
network to compare image patches”. In: Journal of Machine Learning Research 17.1-
32 (2016), p. 2.

[225] Jure Žbontar and Yann LeCun. “Stereo Matching by Training a Convolutional Neural
Network to Compare Image Patches”. In: arXiv preprint arXiv:1510.05970 (2015).

[226] Li Zhang et al. “Single-view modelling of free-form scenes”. In: The Journal of Visu-
alization and Computer Animation (2002).

[227] Richard Zhang, Phillip Isola, and Alexei A Efros. “Colorful Image Colorization”. In:
ECCV. 2016.

[228] Richard Zhang et al. “The Unreasonable E↵ectiveness of Deep Networks as a Percep-
tual Metric”. In: CVPR. 2018.

[229] Zhoutong Zhang, Yebin Liu, and Qionghai Dai. “Light field from micro-baseline image
pair”. In: CVPR. 2015.

[230] Youyi Zheng et al. “Interactive images: cuboid proxies for smart image manipulation.”
In: ACM Transactions on Graphics (TOG) (2012).

[231] Tinghui Zhou et al. “FlowWeb: Joint Image Set Alignment by Weaving Consistent,
Pixel-wise Correspondences”. In: CVPR. 2015.

[232] Tinghui Zhou et al. “Learning dense correspondence via 3d-guided cycle consistency”.
In: CVPR. 2016.

[233] Tinghui Zhou et al. “Stereo Magnification: Learning view synthesis using multiplane
images”. In: SIGGRAPH. 2018.

[234] Tinghui Zhou et al. “Unsupervised learning of depth and ego-motion from video”. In:
CVPR. 2017.

[235] Tinghui Zhou et al. “View synthesis by appearance flow”. In: ECCV. 2016.

[236] Xiaowei Zhou, Menglong Zhu, and Kostas Daniilidis. “Multi-Image Matching via Fast
Alternating Minimization”. In: ICCV. 2015.

BIBLIOGRAPHY 117

[237] Yipin Zhou and Tamara L Berg. “Learning Temporal Transformations from Time-
Lapse Videos”. In: ECCV. 2016.

[238] Jun-Yan Zhu et al. “Unpaired Image-to-Image Translation using Cycle-Consistent
Adversarial Networks”. In: ICCV. 2017.

[239] C. Lawrence Zitnick et al. “High-quality Video View Interpolation Using a Layered
Representation”. In: Proc. SIGGRAPH. 2004.

